材料科学
混溶性
聚合物
聚合物太阳能电池
侧链
富勒烯
有机太阳能电池
化学工程
高分子化学
接受者
有机化学
复合材料
化学
凝聚态物理
物理
工程类
作者
Shuting Pang,Ruiwen Zhang,Chunhui Duan,Song Zhang,Xiaodan Gu,Xi Liu,Fei Huang,Yong Cao
标识
DOI:10.1002/aenm.201901740
摘要
Abstract The development of nonfullerene acceptors has brought polymer solar cells into a new era. Maximizing the performance of nonfullerene solar cells needs appropriate polymer donors that match with the acceptors in both electrical and morphological properties. So far, the design rationales for polymer donors are mainly borrowed from fullerene‐based solar cells, which are not necessarily applicable to nonfullerene solar cells. In this work, the influence of side chain length of polymer donors based on a set of random terpolymers PTAZ‐TPD10‐C n on the device performance of polymer solar cells is investigated with three different acceptor materials, i.e., a fullerene acceptor [70]PCBM, a polymer acceptor N2200, and a fused‐ring molecular acceptor ITIC. Shortening the side chains of polymer donors improves the device performance of [70]PCBM‐based devices, but deteriorates the N2200‐ and ITIC‐based devices. Morphology studies unveil that the miscibility between donor and acceptor in blend films depends on the side chain length of polymer donors. Upon shortening the side chains of the polymer donors, the miscibility between the donor and acceptor increases for the [70]PCBM‐based blends, but decreases for the N2200‐ and ITIC‐based blends. These findings provide new guidelines for the development of polymer donors to match with emerging nonfullerene acceptors.
科研通智能强力驱动
Strongly Powered by AbleSci AI