计算机科学
鉴定(生物学)
水准点(测量)
泛素
特征选择
机器学习
代表(政治)
人工智能
特征(语言学)
过程(计算)
计算生物学
生物
生态学
基因
地理
法学
哲学
操作系统
大地测量学
政治
生物化学
语言学
政治学
作者
Lidong Wang,Ruijun Zhang
出处
期刊:Current Drug Targets
[Bentham Science]
日期:2018-09-28
卷期号:20 (5): 565-578
被引量:7
标识
DOI:10.2174/1389450119666180924150202
摘要
Ubiquitination is an important post-translational modification (PTM) process for the regulation of protein functions, which is associated with cancer, cardiovascular and other diseases. Recent initiatives have focused on the detection of potential ubiquitination sites with the aid of physicochemical test approaches in conjunction with the application of computational methods. The identification of ubiquitination sites using laboratory tests is especially susceptible to the temporality and reversibility of the ubiquitination processes, and is also costly and time-consuming. It has been demonstrated that computational methods are effective in extracting potential rules or inferences from biological sequence collections. Up to the present, the computational strategy has been one of the critical research approaches that have been applied for the identification of ubiquitination sites, and currently, there are numerous state-of-the-art computational methods that have been developed from machine learning and statistical analysis to undertake such work. In the present study, the construction of benchmark datasets is summarized, together with feature representation methods, feature selection approaches and the classifiers involved in several previous publications. In an attempt to explore pertinent development trends for the identification of ubiquitination sites, an independent test dataset was constructed and the predicting results obtained from five prediction tools are reported here, together with some related discussions.
科研通智能强力驱动
Strongly Powered by AbleSci AI