Towards Computational Models of Identifying Protein Ubiquitination Sites

计算机科学 鉴定(生物学) 水准点(测量) 泛素 特征选择 机器学习 代表(政治) 人工智能 特征(语言学) 过程(计算) 计算生物学 生物 生态学 基因 地理 法学 哲学 操作系统 大地测量学 政治 生物化学 语言学 政治学
作者
Lidong Wang,Ruijun Zhang
出处
期刊:Current Drug Targets [Bentham Science]
卷期号:20 (5): 565-578 被引量:7
标识
DOI:10.2174/1389450119666180924150202
摘要

Ubiquitination is an important post-translational modification (PTM) process for the regulation of protein functions, which is associated with cancer, cardiovascular and other diseases. Recent initiatives have focused on the detection of potential ubiquitination sites with the aid of physicochemical test approaches in conjunction with the application of computational methods. The identification of ubiquitination sites using laboratory tests is especially susceptible to the temporality and reversibility of the ubiquitination processes, and is also costly and time-consuming. It has been demonstrated that computational methods are effective in extracting potential rules or inferences from biological sequence collections. Up to the present, the computational strategy has been one of the critical research approaches that have been applied for the identification of ubiquitination sites, and currently, there are numerous state-of-the-art computational methods that have been developed from machine learning and statistical analysis to undertake such work. In the present study, the construction of benchmark datasets is summarized, together with feature representation methods, feature selection approaches and the classifiers involved in several previous publications. In an attempt to explore pertinent development trends for the identification of ubiquitination sites, an independent test dataset was constructed and the predicting results obtained from five prediction tools are reported here, together with some related discussions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毛毛完成签到,获得积分10
1秒前
wwwwww发布了新的文献求助150
2秒前
在水一方应助满意代亦采纳,获得10
2秒前
3秒前
充电宝应助dlr采纳,获得10
3秒前
jtj发布了新的文献求助10
4秒前
英姑应助特来骑采纳,获得10
4秒前
5秒前
清脆的天奇完成签到,获得积分10
5秒前
orixero应助王梓磬采纳,获得10
5秒前
liu发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
7秒前
甜甜慕灵应助亚秋采纳,获得10
8秒前
ff完成签到,获得积分10
8秒前
情怀应助dududu采纳,获得10
8秒前
hhhhhhxxxxxx应助rakuyo采纳,获得10
8秒前
9秒前
蓝色的船应助hashtag采纳,获得10
9秒前
John不想上班完成签到 ,获得积分10
10秒前
勤恳的断秋完成签到 ,获得积分10
10秒前
kb发布了新的文献求助10
10秒前
11秒前
星逝发布了新的文献求助10
11秒前
忧伤的井发布了新的文献求助10
12秒前
chen发布了新的文献求助30
12秒前
laohu2发布了新的文献求助10
13秒前
一一应助虚拟的如娆采纳,获得30
13秒前
13秒前
13秒前
15秒前
15秒前
无花果应助用九采纳,获得10
15秒前
16秒前
16秒前
钱钱钱发布了新的文献求助10
16秒前
公西天抒完成签到,获得积分10
16秒前
研友_VZG7GZ应助忧伤的井采纳,获得10
17秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222211
求助须知:如何正确求助?哪些是违规求助? 2870793
关于积分的说明 8172331
捐赠科研通 2537863
什么是DOI,文献DOI怎么找? 1369824
科研通“疑难数据库(出版商)”最低求助积分说明 645597
邀请新用户注册赠送积分活动 619373