Fusion of machine vision technology and AlexNet-CNNs deep learning network for the detection of postharvest apple pesticide residues

高光谱成像 人工智能 像素 卷积神经网络 模式识别(心理学) 计算机科学 农药残留 圆度(物体) 数学 计算机视觉 杀虫剂 农学 几何学 生物
作者
Bo Jiang,Jinrong He,Shuqin Yang,Hongfei Fu,Tong Li,Huaibo Song,Dongjian He
出处
期刊:Artificial intelligence in agriculture [Elsevier BV]
卷期号:1: 1-8 被引量:132
标识
DOI:10.1016/j.aiia.2019.02.001
摘要

Pesticide residue is an important factor that affects food safety. In order to achieve effective detection of pesticide residues in apples, a machine-vision-based segmentation algorithm and hyperspectral techniques were used to segment the foreground and background regions of the apple image. By calculating the roundness value and extracting the region with the highest roundness value in the connected region, a region of interest (ROI) mask was created for the apple. Four pesticides (chlorpyrifos, carbendazim and two mixed pesticides) and an inactive control were used at the same concentration of 100 ppm (except for the control group), and the hyperspectral region of the corresponding sample image was extracted by obtaining the different types of pesticide residues in the ROI masks. To increase the diversity of the samples and to expand the dataset, Gaussian white noise with a varying signal-to-noise ratio was added to each of the hyperspectral images of the apple. The number of samples was increased from four types of 12 samples to four types of 72 samples, giving 4608 hyperspectral data images in each category. The structure and parameters of a convolutional neural network (CNN) were determined using theoretical analysis and experimental verification. All the extracted hyperspectral images of apples were normalized to 227 × 227 × 3 pixels as the input of the CNN network for pesticide residue detection. There were 18,432 sample data of four types for 72 samples. Of these, 12,288 images were selected using a bootstrap sampling method as the training set, and 6144 as the test set, with no overlap. The test results show that when the number of training epochs was 10, the accuracy of the test set detection was 99.09%, and the detection accuracy of the single-band average image was 95.35%. A comparison with traditional k-nearest neighbor (KNN) and support vector machine classification algorithms showed that the detection accuracy for KNN was 43.75% and the average time was 0.7645 s. These results demonstrate that our method is a small-sample, non-contact, fast, effective and low-cost technique that can provide effective pesticide residue detection in postharvest apples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dyc238100完成签到,获得积分10
1秒前
2秒前
W_G完成签到,获得积分10
3秒前
3秒前
Zsir完成签到,获得积分10
4秒前
hou发布了新的文献求助10
6秒前
英姑应助小高采纳,获得50
8秒前
111完成签到,获得积分10
9秒前
9秒前
Jasper应助Lenacici采纳,获得10
10秒前
晗晗有酒窝完成签到,获得积分10
11秒前
今后应助huang采纳,获得10
13秒前
16秒前
卓儿完成签到,获得积分10
16秒前
jyy关闭了jyy文献求助
19秒前
摸鱼划水完成签到,获得积分10
19秒前
CodeCraft应助科研通管家采纳,获得10
20秒前
1111应助科研通管家采纳,获得10
20秒前
田様应助科研通管家采纳,获得30
20秒前
852应助科研通管家采纳,获得10
20秒前
也是难得取个名完成签到 ,获得积分10
20秒前
Hello应助科研通管家采纳,获得10
20秒前
ding应助科研通管家采纳,获得10
21秒前
1111应助科研通管家采纳,获得10
21秒前
斯文败类应助科研通管家采纳,获得10
21秒前
wang完成签到,获得积分10
21秒前
Orange应助科研通管家采纳,获得10
21秒前
满天星发布了新的文献求助20
21秒前
小二郎应助科研通管家采纳,获得30
21秒前
田様应助科研通管家采纳,获得10
21秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
YamDaamCaa应助科研通管家采纳,获得200
21秒前
李健应助科研通管家采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
酷波er应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
caibaozi应助科研通管家采纳,获得20
22秒前
bkagyin应助科研通管家采纳,获得10
22秒前
22秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993430
求助须知:如何正确求助?哪些是违规求助? 3534082
关于积分的说明 11264604
捐赠科研通 3273901
什么是DOI,文献DOI怎么找? 1806170
邀请新用户注册赠送积分活动 883026
科研通“疑难数据库(出版商)”最低求助积分说明 809662