Sensitization of silicon by singlet exciton fission in tetracene

四烯 单重态裂变 激子 单重态 半导体 材料科学 原子物理学 化学 激发态 光电子学 光化学 凝聚态物理 物理
作者
Markus Einzinger,Tony Wu,Julia F. Kompalla,Hannah L. Smith,Collin F. Perkinson,Lea Nienhaus,Sarah Wieghold,Daniel N. Congreve,Antoine Kahn,Moungi G. Bawendi,Marc A. Baldo
出处
期刊:Nature [Springer Nature]
卷期号:571 (7763): 90-94 被引量:296
标识
DOI:10.1038/s41586-019-1339-4
摘要

Silicon dominates contemporary solar cell technologies1. But when absorbing photons, silicon (like other semiconductors) wastes energy in excess of its bandgap2. Reducing these thermalization losses and enabling better sensitivity to light is possible by sensitizing the silicon solar cell using singlet exciton fission, in which two excited states with triplet spin character (triplet excitons) are generated from a photoexcited state of higher energy with singlet spin character (a singlet exciton)3–5. Singlet exciton fission in the molecular semiconductor tetracene is known to generate triplet excitons that are energetically matched to the silicon bandgap6–8. When the triplet excitons are transferred to silicon they create additional electron–hole pairs, promising to increase cell efficiencies from the single-junction limit of 29 per cent to as high as 35 per cent9. Here we reduce the thickness of the protective hafnium oxynitride layer at the surface of a silicon solar cell to just eight angstroms, using electric-field-effect passivation to enable the efficient energy transfer of the triplet excitons formed in the tetracene. The maximum combined yield of the fission in tetracene and the energy transfer to silicon is around 133 per cent, establishing the potential of singlet exciton fission to increase the efficiencies of silicon solar cells and reduce the cost of the energy that they generate. A silicon and tetracene solar cell employing singlet fission uses an eight-angstrom-thick hafnium oxynitride interlayer to promote efficient triplet transfer, increasing the efficiency of the cell.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
xiaoyu完成签到,获得积分20
1秒前
yangyang111完成签到,获得积分10
1秒前
2秒前
2秒前
moon完成签到 ,获得积分10
3秒前
zy完成签到,获得积分10
3秒前
安详闭月发布了新的文献求助10
3秒前
3秒前
不回首发布了新的文献求助10
3秒前
小于号发布了新的文献求助10
4秒前
4秒前
xx发布了新的文献求助10
4秒前
嘿嘿发布了新的文献求助10
4秒前
栗子发布了新的文献求助10
4秒前
北风完成签到,获得积分10
4秒前
cxy关闭了cxy文献求助
4秒前
5秒前
5秒前
板砖机发布了新的文献求助10
5秒前
顾矜应助海带采纳,获得30
5秒前
wzf完成签到 ,获得积分10
5秒前
缓慢咖啡发布了新的文献求助10
5秒前
华仔应助矮小的海豚采纳,获得10
6秒前
烟花应助马博的司机采纳,获得10
6秒前
侯雪晴发布了新的文献求助10
6秒前
Zx完成签到,获得积分10
6秒前
zmy关闭了zmy文献求助
7秒前
enli发布了新的文献求助10
7秒前
7秒前
CipherSage应助迟来的内啡肽采纳,获得10
8秒前
小懒猪发布了新的文献求助10
8秒前
Jasper应助wangmeiqiong采纳,获得30
8秒前
YH给YH的求助进行了留言
8秒前
8秒前
双星完成签到,获得积分10
9秒前
9秒前
Zx发布了新的文献求助10
9秒前
中西西完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5505852
求助须知:如何正确求助?哪些是违规求助? 4601404
关于积分的说明 14476173
捐赠科研通 4535332
什么是DOI,文献DOI怎么找? 2485305
邀请新用户注册赠送积分活动 1468307
关于科研通互助平台的介绍 1440779