Innovative design of superhydrophobic thermal energy-storage materials by microencapsulation of n-docosane with nanostructured ZnO/SiO2 shell

材料科学 热能储存 接触角 涂层 制作 储能 纳米技术 热的 相变材料 化学工程 复合材料 生物污染 乳状液 表面能 等温过程 温度循环 化学 气象学 替代医学 生态学 功率(物理) 病理 工程类 物理 热力学 生物 医学 量子力学 生物化学
作者
Kun Sun,Huan Liu,Xiaodong Wang,Dezhen Wu
出处
期刊:Applied Energy [Elsevier]
卷期号:237: 549-565 被引量:100
标识
DOI:10.1016/j.apenergy.2019.01.043
摘要

We reported an innovative design for a novel type of superhydrophobic thermal energy-storage material by microencapsulation of phase change material (PCM) with a nanostructured ZnO/SiO2 shell. This hierarchical microcapsule system was constructed through emulsion-templated interfacial polycondensation of silica precursor and structure-induced growth of ZnO crystals. The chemical composition and structural characterizations identified the successful fabrication of this hierarchical microcapsule system in accordance with our design idea and also confirmed the formation of a well-defined core-shell structure as well as a flower-like ZnO surface. Thermal analysis indicated that the resultant microcapsules not only could perform latent-heat storage and release by phase changes with the associated enthalpies over 139 J/g, but also demonstrated a high phase change reliability and long-term durability. The optimum heat charging and discharging conditions of the microcapsules were also determined by nonisothermal and isothermal differential scanning calorimetric analyses. Infrared thermographic analysis proved that the resultant microcapsules had the capability of conducting thermal regulation and thermal management. Most of all, a superhydrophobic surface was achieved by a combination of the nanostructured surface and low-surface-energy coating, thus leading to a large water contact angle of 159.7°. Owing to a smart combination of PCM and superhydrophobic feature, the hierarchical microcapsule system developed by this study is expected to have a great potential in multifunctional applications for thermal energy storage, thermal regulation and management, self-cleaning and antifouling coatings, anticorrosion, liquid transportation, and many more.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ruxing完成签到,获得积分10
刚刚
影像大侠完成签到,获得积分10
刚刚
852应助HYG采纳,获得30
1秒前
麦麦完成签到,获得积分10
1秒前
田様应助Isabel采纳,获得10
1秒前
gezid完成签到 ,获得积分10
1秒前
2秒前
2秒前
niu1发布了新的文献求助10
2秒前
Intro发布了新的文献求助10
2秒前
舒服的冬天完成签到,获得积分10
3秒前
Helical给Helical的求助进行了留言
3秒前
甜蜜晓绿完成签到,获得积分10
3秒前
4秒前
钱多多完成签到,获得积分10
4秒前
baekhyun完成签到,获得积分20
4秒前
4秒前
dpp发布了新的文献求助10
4秒前
今今完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
6秒前
打打应助无情的白桃采纳,获得10
6秒前
香蕉觅云应助与光同晨采纳,获得10
7秒前
7秒前
小蘑菇应助clm采纳,获得10
7秒前
yhnsag完成签到,获得积分10
7秒前
Lin完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
9秒前
Rain发布了新的文献求助10
9秒前
butiflow完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
务实的唇膏完成签到,获得积分10
10秒前
Will完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762