Innovative design of superhydrophobic thermal energy-storage materials by microencapsulation of n-docosane with nanostructured ZnO/SiO2 shell

材料科学 热能储存 接触角 涂层 制作 储能 纳米技术 热的 相变材料 化学工程 复合材料 生物污染 乳状液 表面能 等温过程 温度循环 化学 气象学 替代医学 生态学 功率(物理) 病理 工程类 物理 热力学 生物 医学 量子力学 生物化学
作者
Kun Sun,Huan Liu,Xiaodong Wang,Dezhen Wu
出处
期刊:Applied Energy [Elsevier]
卷期号:237: 549-565 被引量:99
标识
DOI:10.1016/j.apenergy.2019.01.043
摘要

We reported an innovative design for a novel type of superhydrophobic thermal energy-storage material by microencapsulation of phase change material (PCM) with a nanostructured ZnO/SiO2 shell. This hierarchical microcapsule system was constructed through emulsion-templated interfacial polycondensation of silica precursor and structure-induced growth of ZnO crystals. The chemical composition and structural characterizations identified the successful fabrication of this hierarchical microcapsule system in accordance with our design idea and also confirmed the formation of a well-defined core-shell structure as well as a flower-like ZnO surface. Thermal analysis indicated that the resultant microcapsules not only could perform latent-heat storage and release by phase changes with the associated enthalpies over 139 J/g, but also demonstrated a high phase change reliability and long-term durability. The optimum heat charging and discharging conditions of the microcapsules were also determined by nonisothermal and isothermal differential scanning calorimetric analyses. Infrared thermographic analysis proved that the resultant microcapsules had the capability of conducting thermal regulation and thermal management. Most of all, a superhydrophobic surface was achieved by a combination of the nanostructured surface and low-surface-energy coating, thus leading to a large water contact angle of 159.7°. Owing to a smart combination of PCM and superhydrophobic feature, the hierarchical microcapsule system developed by this study is expected to have a great potential in multifunctional applications for thermal energy storage, thermal regulation and management, self-cleaning and antifouling coatings, anticorrosion, liquid transportation, and many more.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利毕业完成签到,获得积分20
刚刚
文士完成签到,获得积分10
刚刚
科研通AI2S应助yy采纳,获得10
刚刚
美人鱼完成签到,获得积分10
刚刚
莹莹发布了新的文献求助10
刚刚
万豪发布了新的文献求助10
刚刚
刚刚
shinysparrow应助加菲丰丰采纳,获得200
1秒前
简单完成签到,获得积分10
1秒前
是晓宇啊发布了新的文献求助10
2秒前
Airhug完成签到 ,获得积分10
2秒前
123发布了新的文献求助10
3秒前
谷jm完成签到,获得积分10
3秒前
8R60d8应助机智的代亦采纳,获得10
4秒前
大橘子发布了新的文献求助10
4秒前
小又完成签到,获得积分10
5秒前
Jasper应助研友_LwlAgn采纳,获得10
5秒前
5秒前
z3Q应助ZhongHuaHua采纳,获得10
7秒前
8秒前
8秒前
XYZ发布了新的文献求助10
8秒前
NexusExplorer应助disciple采纳,获得10
9秒前
10秒前
猪皮恶人完成签到,获得积分10
10秒前
NexusExplorer应助洁净芸遥采纳,获得10
11秒前
胡靖完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
Atom完成签到,获得积分10
12秒前
猪皮恶人发布了新的文献求助10
12秒前
GeoEye发布了新的文献求助222
12秒前
14秒前
马婷婷发布了新的文献求助10
14秒前
枯叶蝶完成签到 ,获得积分10
14秒前
14秒前
15秒前
犹豫的若发布了新的文献求助10
16秒前
酷酷小松鼠完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305763
求助须知:如何正确求助?哪些是违规求助? 2939395
关于积分的说明 8493534
捐赠科研通 2613845
什么是DOI,文献DOI怎么找? 1427668
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647945