Automated Continuous Acute Kidney Injury Prediction and Surveillance: A Random Forest Model

医学 急性肾损伤 队列 接收机工作特性 回顾性队列研究 急诊医学 病历 队列研究 前瞻性队列研究 重症监护 重症监护医学 内科学
作者
Caitlyn M. Chiofolo,Nicolas W. Chbat,Erina Ghosh,Larry J. Eshelman,Kianoush Kashani
出处
期刊:Mayo Clinic Proceedings [Elsevier]
卷期号:94 (5): 783-792 被引量:80
标识
DOI:10.1016/j.mayocp.2019.02.009
摘要

Objective To develop and validate a prediction model of acute kidney injury (AKI) of any severity that could be used for AKI surveillance and management to improve clinical outcomes. Patients and Methods This retrospective cohort study was conducted in medical, surgical, and mixed intensive care units (ICUs) at Mayo Clinic in Rochester, Minnesota, including adult (≥18 years of age) ICU-unique patients admitted between October 1, 2004, and April 30, 2011. Our primary objective was prediction of AKI using extant clinical data following ICU admission. We used random forest classification to provide continuous AKI risk score. Results We included 4572 and 1958 patients in the training and validation mutually exclusive cohorts, respectively. Acute kidney injury occurred in 1355 patients (30%) in the training cohort and 580 (30%) in the validation cohort. We incorporated known AKI risk factors and routinely measured vital characteristics and laboratory results. The model was run throughout ICU admission every 15 minutes and achieved an area under the receiver operating characteristic curve of 0.88 on validation. It was 92% sensitive and 68% specific and detected 30% of AKI cases at least 6 hours before the criterion standard time (AKI stages 1-3). For discrimination of AKI stages 2 to 3, the model had 91% sensitivity, 71% specificity, and 53% detection of AKI cases at least 6 hours before AKI onset. Conclusion We developed and validated an AKI prediction model using random forest for continuous monitoring of ICU patients. This model could be used to identify high-risk patients for preventive measures or identifying patients of prospective interventional trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助满意以亦采纳,获得30
刚刚
gww发布了新的文献求助20
1秒前
枫林晚完成签到,获得积分10
1秒前
JiangY完成签到,获得积分10
2秒前
2秒前
2秒前
陈云凤完成签到,获得积分10
2秒前
ayintree发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
3秒前
zhang完成签到,获得积分20
3秒前
ning发布了新的文献求助10
3秒前
3秒前
元谷雪发布了新的文献求助10
4秒前
4秒前
5秒前
Return应助科研通管家采纳,获得10
5秒前
积极的箴完成签到,获得积分10
5秒前
无极微光应助科研通管家采纳,获得20
5秒前
英俊的铭应助科研通管家采纳,获得10
5秒前
pluto应助哒哒哒采纳,获得10
6秒前
6秒前
Momomo应助哒哒哒采纳,获得10
6秒前
SciGPT应助科研通管家采纳,获得10
6秒前
小马甲应助科研通管家采纳,获得10
6秒前
FashionBoy应助科研通管家采纳,获得10
6秒前
斯文败类应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
无极微光应助科研通管家采纳,获得20
6秒前
淡定宛白完成签到,获得积分10
6秒前
6秒前
充电宝应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
Akim应助科研通管家采纳,获得10
6秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277