Automated Continuous Acute Kidney Injury Prediction and Surveillance: A Random Forest Model

医学 急性肾损伤 队列 接收机工作特性 回顾性队列研究 急诊医学 病历 队列研究 前瞻性队列研究 重症监护 重症监护医学 内科学
作者
Caitlyn M. Chiofolo,Nicolas W. Chbat,Erina Ghosh,Larry J. Eshelman,Kianoush Kashani
出处
期刊:Mayo Clinic Proceedings [Elsevier]
卷期号:94 (5): 783-792 被引量:80
标识
DOI:10.1016/j.mayocp.2019.02.009
摘要

Objective To develop and validate a prediction model of acute kidney injury (AKI) of any severity that could be used for AKI surveillance and management to improve clinical outcomes. Patients and Methods This retrospective cohort study was conducted in medical, surgical, and mixed intensive care units (ICUs) at Mayo Clinic in Rochester, Minnesota, including adult (≥18 years of age) ICU-unique patients admitted between October 1, 2004, and April 30, 2011. Our primary objective was prediction of AKI using extant clinical data following ICU admission. We used random forest classification to provide continuous AKI risk score. Results We included 4572 and 1958 patients in the training and validation mutually exclusive cohorts, respectively. Acute kidney injury occurred in 1355 patients (30%) in the training cohort and 580 (30%) in the validation cohort. We incorporated known AKI risk factors and routinely measured vital characteristics and laboratory results. The model was run throughout ICU admission every 15 minutes and achieved an area under the receiver operating characteristic curve of 0.88 on validation. It was 92% sensitive and 68% specific and detected 30% of AKI cases at least 6 hours before the criterion standard time (AKI stages 1-3). For discrimination of AKI stages 2 to 3, the model had 91% sensitivity, 71% specificity, and 53% detection of AKI cases at least 6 hours before AKI onset. Conclusion We developed and validated an AKI prediction model using random forest for continuous monitoring of ICU patients. This model could be used to identify high-risk patients for preventive measures or identifying patients of prospective interventional trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Wu完成签到 ,获得积分10
1秒前
sunny发布了新的文献求助10
1秒前
刘婷发布了新的文献求助10
1秒前
美好斓发布了新的文献求助30
2秒前
2秒前
ciciyu完成签到,获得积分10
3秒前
Hello应助ZYSNNNN采纳,获得10
3秒前
小赵同学完成签到,获得积分10
3秒前
阳光火车完成签到 ,获得积分10
4秒前
5秒前
英俊的铭应助sunshine采纳,获得10
5秒前
ev-nano发布了新的文献求助10
5秒前
5秒前
5秒前
指哪打哪发布了新的文献求助10
6秒前
懒洋洋大王完成签到,获得积分20
6秒前
悠悠发布了新的文献求助10
7秒前
7秒前
7秒前
满家归寻完成签到 ,获得积分10
8秒前
8秒前
在水一方应助cx采纳,获得10
8秒前
车车车车车车完成签到,获得积分10
8秒前
Halsey完成签到,获得积分10
8秒前
8秒前
慕青应助star采纳,获得10
9秒前
单纯谷云发布了新的文献求助10
10秒前
aa发布了新的文献求助10
10秒前
传奇3应助dongdong采纳,获得10
11秒前
华仔应助小马采纳,获得10
12秒前
爆米花应助瘦瘦的映安采纳,获得10
12秒前
Kra发布了新的文献求助10
13秒前
13秒前
Lucas应助shabalala采纳,获得10
13秒前
13秒前
cugwzr完成签到,获得积分10
14秒前
刘婷完成签到,获得积分10
14秒前
打打应助hly采纳,获得10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547929
求助须知:如何正确求助?哪些是违规求助? 4633375
关于积分的说明 14630983
捐赠科研通 4574989
什么是DOI,文献DOI怎么找? 2508795
邀请新用户注册赠送积分活动 1485047
关于科研通互助平台的介绍 1456075