Automated Continuous Acute Kidney Injury Prediction and Surveillance: A Random Forest Model

医学 急性肾损伤 队列 接收机工作特性 回顾性队列研究 急诊医学 病历 队列研究 前瞻性队列研究 重症监护 重症监护医学 内科学
作者
Caitlyn M. Chiofolo,Nicolas W. Chbat,Erina Ghosh,Larry J. Eshelman,Kianoush Kashani
出处
期刊:Mayo Clinic Proceedings [Elsevier]
卷期号:94 (5): 783-792 被引量:80
标识
DOI:10.1016/j.mayocp.2019.02.009
摘要

Objective To develop and validate a prediction model of acute kidney injury (AKI) of any severity that could be used for AKI surveillance and management to improve clinical outcomes. Patients and Methods This retrospective cohort study was conducted in medical, surgical, and mixed intensive care units (ICUs) at Mayo Clinic in Rochester, Minnesota, including adult (≥18 years of age) ICU-unique patients admitted between October 1, 2004, and April 30, 2011. Our primary objective was prediction of AKI using extant clinical data following ICU admission. We used random forest classification to provide continuous AKI risk score. Results We included 4572 and 1958 patients in the training and validation mutually exclusive cohorts, respectively. Acute kidney injury occurred in 1355 patients (30%) in the training cohort and 580 (30%) in the validation cohort. We incorporated known AKI risk factors and routinely measured vital characteristics and laboratory results. The model was run throughout ICU admission every 15 minutes and achieved an area under the receiver operating characteristic curve of 0.88 on validation. It was 92% sensitive and 68% specific and detected 30% of AKI cases at least 6 hours before the criterion standard time (AKI stages 1-3). For discrimination of AKI stages 2 to 3, the model had 91% sensitivity, 71% specificity, and 53% detection of AKI cases at least 6 hours before AKI onset. Conclusion We developed and validated an AKI prediction model using random forest for continuous monitoring of ICU patients. This model could be used to identify high-risk patients for preventive measures or identifying patients of prospective interventional trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
iiiid发布了新的文献求助20
刚刚
大个应助年轻的宛采纳,获得10
1秒前
1秒前
yuxin发布了新的文献求助10
2秒前
2秒前
hxh完成签到 ,获得积分10
2秒前
2秒前
善学以致用应助小石头采纳,获得10
3秒前
蒋瑞轩完成签到,获得积分10
3秒前
Owen应助66采纳,获得10
3秒前
3秒前
Dayday发布了新的文献求助10
3秒前
4秒前
木木发布了新的文献求助10
4秒前
路小果发布了新的文献求助10
4秒前
5秒前
巷猫完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
Hello应助北枳采纳,获得10
6秒前
6秒前
李健的小迷弟应助菲菲采纳,获得30
6秒前
7秒前
KEHUGE完成签到,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
Lucy发布了新的文献求助10
9秒前
dud完成签到,获得积分10
10秒前
思源应助笨笨西装采纳,获得10
10秒前
一眼云烟发布了新的文献求助10
10秒前
科研通AI2S应助春和景明采纳,获得10
10秒前
加减乘除发布了新的文献求助10
11秒前
13秒前
卞威振发布了新的文献求助10
14秒前
14秒前
14秒前
14秒前
甜甜的平蓝完成签到 ,获得积分10
14秒前
年轻的宛发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5507383
求助须知:如何正确求助?哪些是违规求助? 4603007
关于积分的说明 14483238
捐赠科研通 4536810
什么是DOI,文献DOI怎么找? 2486410
邀请新用户注册赠送积分活动 1469007
关于科研通互助平台的介绍 1441377