Automated Continuous Acute Kidney Injury Prediction and Surveillance: A Random Forest Model

医学 急性肾损伤 队列 接收机工作特性 回顾性队列研究 急诊医学 病历 队列研究 前瞻性队列研究 重症监护 重症监护医学 内科学
作者
Caitlyn M. Chiofolo,Nicolas W. Chbat,Erina Ghosh,Larry J. Eshelman,Kianoush Kashani
出处
期刊:Mayo Clinic Proceedings [Elsevier]
卷期号:94 (5): 783-792 被引量:74
标识
DOI:10.1016/j.mayocp.2019.02.009
摘要

Objective To develop and validate a prediction model of acute kidney injury (AKI) of any severity that could be used for AKI surveillance and management to improve clinical outcomes. Patients and Methods This retrospective cohort study was conducted in medical, surgical, and mixed intensive care units (ICUs) at Mayo Clinic in Rochester, Minnesota, including adult (≥18 years of age) ICU-unique patients admitted between October 1, 2004, and April 30, 2011. Our primary objective was prediction of AKI using extant clinical data following ICU admission. We used random forest classification to provide continuous AKI risk score. Results We included 4572 and 1958 patients in the training and validation mutually exclusive cohorts, respectively. Acute kidney injury occurred in 1355 patients (30%) in the training cohort and 580 (30%) in the validation cohort. We incorporated known AKI risk factors and routinely measured vital characteristics and laboratory results. The model was run throughout ICU admission every 15 minutes and achieved an area under the receiver operating characteristic curve of 0.88 on validation. It was 92% sensitive and 68% specific and detected 30% of AKI cases at least 6 hours before the criterion standard time (AKI stages 1-3). For discrimination of AKI stages 2 to 3, the model had 91% sensitivity, 71% specificity, and 53% detection of AKI cases at least 6 hours before AKI onset. Conclusion We developed and validated an AKI prediction model using random forest for continuous monitoring of ICU patients. This model could be used to identify high-risk patients for preventive measures or identifying patients of prospective interventional trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Tolly发布了新的文献求助10
2秒前
充电宝应助aaaaa采纳,获得10
2秒前
雨前知了完成签到,获得积分10
2秒前
英俊的铭应助朴实寻桃采纳,获得10
3秒前
orixero应助傻傻采纳,获得10
3秒前
秋半梦发布了新的文献求助10
3秒前
June完成签到 ,获得积分10
3秒前
科研通AI2S应助完美的海秋采纳,获得10
3秒前
爆米花应助嘻鱼徐采纳,获得10
3秒前
19558991211完成签到,获得积分20
5秒前
6秒前
雅欣完成签到,获得积分10
6秒前
9秒前
liumou发布了新的文献求助10
10秒前
10秒前
yan完成签到,获得积分10
11秒前
雅欣发布了新的文献求助10
11秒前
CodeCraft应助活着采纳,获得10
12秒前
14秒前
zsn完成签到 ,获得积分10
16秒前
16秒前
王大壮完成签到,获得积分10
19秒前
dingdind发布了新的文献求助10
19秒前
Woyixin发布了新的文献求助10
19秒前
cimu95发布了新的文献求助10
20秒前
20秒前
20秒前
25秒前
鸣蜩阿六发布了新的文献求助10
25秒前
科研通AI2S应助完美的海秋采纳,获得10
25秒前
Woyixin完成签到,获得积分10
30秒前
30秒前
喜悦雪莲发布了新的文献求助10
31秒前
希望天下0贩的0应助zhu采纳,获得10
31秒前
宝宝发布了新的文献求助10
33秒前
34秒前
maerray发布了新的文献求助10
34秒前
华仔应助球球采纳,获得10
37秒前
信仰发布了新的文献求助10
37秒前
38秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3238357
求助须知:如何正确求助?哪些是违规求助? 2883764
关于积分的说明 8231554
捐赠科研通 2551751
什么是DOI,文献DOI怎么找? 1380237
科研通“疑难数据库(出版商)”最低求助积分说明 648979
邀请新用户注册赠送积分活动 624619