Automated Continuous Acute Kidney Injury Prediction and Surveillance: A Random Forest Model

医学 急性肾损伤 队列 接收机工作特性 回顾性队列研究 急诊医学 病历 队列研究 前瞻性队列研究 重症监护 重症监护医学 内科学
作者
Caitlyn M. Chiofolo,Nicolas W. Chbat,Erina Ghosh,Larry J. Eshelman,Kianoush Kashani
出处
期刊:Mayo Clinic Proceedings [Elsevier BV]
卷期号:94 (5): 783-792 被引量:80
标识
DOI:10.1016/j.mayocp.2019.02.009
摘要

Objective To develop and validate a prediction model of acute kidney injury (AKI) of any severity that could be used for AKI surveillance and management to improve clinical outcomes. Patients and Methods This retrospective cohort study was conducted in medical, surgical, and mixed intensive care units (ICUs) at Mayo Clinic in Rochester, Minnesota, including adult (≥18 years of age) ICU-unique patients admitted between October 1, 2004, and April 30, 2011. Our primary objective was prediction of AKI using extant clinical data following ICU admission. We used random forest classification to provide continuous AKI risk score. Results We included 4572 and 1958 patients in the training and validation mutually exclusive cohorts, respectively. Acute kidney injury occurred in 1355 patients (30%) in the training cohort and 580 (30%) in the validation cohort. We incorporated known AKI risk factors and routinely measured vital characteristics and laboratory results. The model was run throughout ICU admission every 15 minutes and achieved an area under the receiver operating characteristic curve of 0.88 on validation. It was 92% sensitive and 68% specific and detected 30% of AKI cases at least 6 hours before the criterion standard time (AKI stages 1-3). For discrimination of AKI stages 2 to 3, the model had 91% sensitivity, 71% specificity, and 53% detection of AKI cases at least 6 hours before AKI onset. Conclusion We developed and validated an AKI prediction model using random forest for continuous monitoring of ICU patients. This model could be used to identify high-risk patients for preventive measures or identifying patients of prospective interventional trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
落后妖妖发布了新的文献求助10
1秒前
任性雪糕完成签到 ,获得积分10
1秒前
sgt完成签到,获得积分10
1秒前
xxm发布了新的文献求助10
2秒前
star应助舒适的皮卡丘采纳,获得10
2秒前
2秒前
Hello应助自觉水绿采纳,获得10
3秒前
3秒前
xl完成签到,获得积分10
5秒前
5秒前
yuan发布了新的文献求助10
5秒前
文静的柠檬完成签到,获得积分20
5秒前
臭臭完成签到,获得积分10
5秒前
tomjiwen完成签到 ,获得积分10
6秒前
FashionBoy应助伶俐凡白采纳,获得10
7秒前
8秒前
8秒前
CodeCraft应助黄婷萱采纳,获得10
8秒前
六元一斤虾完成签到 ,获得积分10
8秒前
勤奋傲云完成签到,获得积分10
8秒前
李健的小迷弟应助xl采纳,获得10
9秒前
酷波er应助董先生采纳,获得10
11秒前
霍笑寒完成签到,获得积分10
11秒前
Steven发布了新的文献求助50
11秒前
地平完成签到,获得积分10
11秒前
12秒前
从嘉发布了新的文献求助10
12秒前
13秒前
共享精神应助袁露采纳,获得30
13秒前
15秒前
科目三应助wgnahoa采纳,获得10
15秒前
16秒前
充电宝应助LI电池采纳,获得10
16秒前
认真搞科研啦完成签到,获得积分10
17秒前
退学炒股发布了新的文献求助10
17秒前
女爰舍予发布了新的文献求助10
17秒前
20秒前
ww发布了新的文献求助10
20秒前
汉堡王完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
On the Angular Distribution in Nuclear Reactions and Coincidence Measurements 1000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5307165
求助须知:如何正确求助?哪些是违规求助? 4452863
关于积分的说明 13855440
捐赠科研通 4340491
什么是DOI,文献DOI怎么找? 2383191
邀请新用户注册赠送积分活动 1378035
关于科研通互助平台的介绍 1345875