Automated Continuous Acute Kidney Injury Prediction and Surveillance: A Random Forest Model

医学 急性肾损伤 队列 接收机工作特性 回顾性队列研究 急诊医学 病历 队列研究 前瞻性队列研究 重症监护 重症监护医学 内科学
作者
Caitlyn M. Chiofolo,Nicolas W. Chbat,Erina Ghosh,Larry J. Eshelman,Kianoush Kashani
出处
期刊:Mayo Clinic Proceedings [Elsevier BV]
卷期号:94 (5): 783-792 被引量:74
标识
DOI:10.1016/j.mayocp.2019.02.009
摘要

Objective To develop and validate a prediction model of acute kidney injury (AKI) of any severity that could be used for AKI surveillance and management to improve clinical outcomes. Patients and Methods This retrospective cohort study was conducted in medical, surgical, and mixed intensive care units (ICUs) at Mayo Clinic in Rochester, Minnesota, including adult (≥18 years of age) ICU-unique patients admitted between October 1, 2004, and April 30, 2011. Our primary objective was prediction of AKI using extant clinical data following ICU admission. We used random forest classification to provide continuous AKI risk score. Results We included 4572 and 1958 patients in the training and validation mutually exclusive cohorts, respectively. Acute kidney injury occurred in 1355 patients (30%) in the training cohort and 580 (30%) in the validation cohort. We incorporated known AKI risk factors and routinely measured vital characteristics and laboratory results. The model was run throughout ICU admission every 15 minutes and achieved an area under the receiver operating characteristic curve of 0.88 on validation. It was 92% sensitive and 68% specific and detected 30% of AKI cases at least 6 hours before the criterion standard time (AKI stages 1-3). For discrimination of AKI stages 2 to 3, the model had 91% sensitivity, 71% specificity, and 53% detection of AKI cases at least 6 hours before AKI onset. Conclusion We developed and validated an AKI prediction model using random forest for continuous monitoring of ICU patients. This model could be used to identify high-risk patients for preventive measures or identifying patients of prospective interventional trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaochuan925完成签到 ,获得积分10
刚刚
Estella完成签到,获得积分10
刚刚
彩色觅荷完成签到,获得积分10
刚刚
xuhanlin发布了新的文献求助30
1秒前
lize5493完成签到,获得积分10
1秒前
BESIDESBKPP发布了新的文献求助10
1秒前
布丁仔完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
琉璃发布了新的文献求助10
2秒前
MM11111完成签到,获得积分10
2秒前
微笑诗柳发布了新的文献求助10
2秒前
2秒前
顾矜应助dyd采纳,获得10
2秒前
2秒前
3秒前
LordRedScience完成签到,获得积分10
3秒前
卷心菜完成签到,获得积分10
3秒前
kk发布了新的文献求助10
3秒前
gy发布了新的文献求助10
4秒前
ZTK完成签到,获得积分10
4秒前
4秒前
孤独衣发布了新的文献求助10
4秒前
眼睛大雨筠应助aa采纳,获得30
5秒前
等待访天完成签到,获得积分10
5秒前
若风发布了新的文献求助10
5秒前
jjj应助Estrella采纳,获得10
6秒前
小马甲应助yu采纳,获得10
6秒前
冷傲迎梦发布了新的文献求助10
6秒前
7秒前
YW关闭了YW文献求助
7秒前
老流氓完成签到,获得积分10
8秒前
huxuehong完成签到 ,获得积分10
8秒前
CL发布了新的文献求助10
8秒前
默默的豁发布了新的文献求助10
9秒前
向往完成签到,获得积分10
9秒前
赵小胖完成签到,获得积分10
9秒前
儒雅的函完成签到,获得积分10
10秒前
mumu发布了新的文献求助10
10秒前
迟暮完成签到 ,获得积分10
10秒前
yyl完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953688
求助须知:如何正确求助?哪些是违规求助? 3499494
关于积分的说明 11095814
捐赠科研通 3230038
什么是DOI,文献DOI怎么找? 1785859
邀请新用户注册赠送积分活动 869602
科研通“疑难数据库(出版商)”最低求助积分说明 801479