多孔性
堆积
膜
欧姆接触
扩散
材料科学
化学
化学工程
复合材料
图层(电子)
热力学
生物化学
物理
工程类
有机化学
作者
Zhenye Kang,Shule Yu,Gaoqiang Yang,Yifan Li,Guido Bender,Bryan S. Pivovar,Johney B. Green,Fengyuan Zhang
标识
DOI:10.1016/j.electacta.2019.05.096
摘要
Thin/tunable liquid/gas diffusion layers (TT-LGDLs) or porous transport layers (TT-PTLs), have exhibited superior multifunctional performance in proton exchange membrane electrolyzer cells (PEMECs), which can be attributed to their unique structures, such as planar surface, straight-through pores, thin thickness, etc. For achieving better PEMEC performance, TT-LGDLs with smaller pore size are desired. However, in this case, mass diffusion issues are brought in when some of the pores are covered by the flow field lands or shoulders. The coverage of the pores can lead to very high transport resistance, which may reduce the number of active oxygen evolution reaction sites, and therefore lower down the PEMEC performance. The in-plane transport enhancement layer for TT-LGDLs/PTLs are proposed to develop a dual-layer LGDL/PTL structure for improving the mass diffusion and the PEMEC performance. The results of this research reveal that the dual-layer LGDL/PTL structure exhibits smaller ohmic resistance and mass transport resistance, and therefore improve the PEMEC performance, without obvious changes in kinetic losses. The total ohmic resistance and mass transport resistance can be reduced by about 23% and 41%, respectively, with an ∼830 μm pore TT-LGDL/PTL stacking on a ∼100 μm pore TT-LGDL/PTL. The results indicate the feasibility of stacking the in-plane transport enhancement layer with large pore sizes onto a small pore TT-LGDLs/PTLs for high efficiency and low cost PEMEC practical applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI