Insight on lithium metal anode interphasial chemistry: Reduction mechanism of cyclic ether solvent and SEI film formation

电解质 二甲氧基乙烷 锂(药物) 阳极 电化学 材料科学 无机化学 乙醚 化学工程 相间 溶剂 化学 有机化学 电极 物理化学 内分泌学 工程类 生物 医学 遗传学
作者
Qi Liu,Arthur v. Cresce,Marshall A. Schroeder,Kang Xu,Daobin Mu,Borong Wu,Lili Shi,Feng Wu
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:17: 366-373 被引量:117
标识
DOI:10.1016/j.ensm.2018.09.024
摘要

While the solid-electrolyte-interphase (SEI) originating from carbonate-based electrolytes has been extensively studied due to the success of Li-ion batteries, significantly less is known about the SEI formed in ether-based electrolytes, which have become increasingly important for many “beyond-Li ion” batteries, including lithium-sulfur and other lithium metal battery systems. Li dendrite growth and poor cycling efficiencies related to high rate and/or high capacity cycling of lithium are two of the primary factors limiting practical application of Li metal anodes. Similar to graphite in Li-ion batteries, these behaviors are inextricably linked to the mechanism for SEI formation, the resulting interphase chemistry, and the film stability during cycling—all of which require further understanding. Employing both computational and experimental means in this effort, we investigated the reduction chemistry of dimethoxyethane (DME) and 1,3-dioxolane (DOL) on the surface of metallic lithium. We determined that ether-based SEIs are layer-structured, with an outer organic/polymeric layer consisting of lithium oligoethoxides with C-C-O or O-C-O linkages and an inner layer of simple inorganic oxides (Li2O). Remarkably, although Li+ is preferentially solvated by DME, it is the cyclic DOL that primarily contributes to the interphase chemistry. This selective electrochemical reduction of ether solvents is corroborated by precise calculation of transition state structures and energies, providing a valuable guide for future design and manipulation of Li anode interphasial chemistries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助医路通行采纳,获得10
1秒前
zsl完成签到,获得积分10
4秒前
坦率雁卉完成签到,获得积分10
4秒前
4秒前
4秒前
专一的纸飞机完成签到,获得积分20
5秒前
George完成签到,获得积分10
5秒前
7秒前
mmm完成签到 ,获得积分10
10秒前
11秒前
emergency完成签到,获得积分10
11秒前
火星上白羊完成签到,获得积分10
12秒前
12秒前
小小酥完成签到 ,获得积分10
14秒前
阿刁完成签到,获得积分10
14秒前
16秒前
我的miemie发布了新的文献求助10
16秒前
在水一方应助火花采纳,获得10
18秒前
19秒前
21秒前
Bupivacaine完成签到,获得积分10
21秒前
诸葛不亮完成签到 ,获得积分10
21秒前
李李李李李完成签到,获得积分10
22秒前
单薄丹秋完成签到,获得积分20
22秒前
远山发布了新的文献求助10
23秒前
23秒前
harvey完成签到,获得积分10
23秒前
褚香旋完成签到,获得积分10
24秒前
lapidary发布了新的文献求助10
24秒前
24秒前
季夏完成签到,获得积分10
26秒前
青果发布了新的文献求助10
27秒前
28秒前
29秒前
寒冷妙梦完成签到,获得积分10
29秒前
自信眼睛完成签到 ,获得积分20
30秒前
30秒前
30秒前
医路通行完成签到,获得积分10
31秒前
lapidary完成签到,获得积分20
33秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165183
求助须知:如何正确求助?哪些是违规求助? 2816187
关于积分的说明 7911845
捐赠科研通 2475930
什么是DOI,文献DOI怎么找? 1318423
科研通“疑难数据库(出版商)”最低求助积分说明 632143
版权声明 602388