材料科学
德鲁德模型
纳米技术
金属有机骨架
太赫兹辐射
凝聚态物理
电导率
载流子
光电导性
光电子学
电子迁移率
化学
有机化学
物理化学
物理
吸附
作者
Renhao Dong⧫,Peng Han,Himani Arora,Marco Ballabio,Melike Karakus,Zhe Zhang,Chandra Shekhar,Péter Adler,Petko St. Petkov,Artur Erbe,Stefan C. B. Mannsfeld,Claudia Felser,Thomas Heine,Mischa Bonn,Xinliang Feng,Enrique Cánovas
出处
期刊:Nature Materials
[Springer Nature]
日期:2018-10-10
卷期号:17 (11): 1027-1032
被引量:409
标识
DOI:10.1038/s41563-018-0189-z
摘要
Metal–organic frameworks (MOFs) are hybrid materials based on crystalline coordination polymers that consist of metal ions connected by organic ligands. In addition to the traditional applications in gas storage and separation or catalysis, the long-range crystalline order in MOFs, as well as the tunable coupling between the organic and inorganic constituents, has led to the recent development of electrically conductive MOFs as a new generation of electronic materials. However, to date, the nature of charge transport in the MOFs has remained elusive. Here we demonstrate, using high-frequency terahertz photoconductivity and Hall effect measurements, Drude-type band-like transport in a semiconducting, π–d conjugated porous Fe3(THT)2(NH4)3 (THT, 2,3,6,7,10,11-triphenylenehexathiol) two-dimensional MOF, with a room-temperature mobility up to ~ 220 cm2 V–1 s–1. The temperature-dependent conductivity reveals that this mobility represents a lower limit for the material, as mobility is limited by impurity scattering. These results illustrate the potential for high-mobility semiconducting MOFs as active materials in thin-film optoelectronic devices. Semiconducting metal–organic frameworks (MOFs) can be of interest for optoelectronics, but charge transport property is rarely elucidated. Here, a π–d conjugated 2D MOF shows band-like charge transport, with room-temperature mobility of 220 cm2 V–1 s–1.
科研通智能强力驱动
Strongly Powered by AbleSci AI