Identification of drug-side effect association via multiple information integration with centered kernel alignment

核(代数) 副作用(计算机科学) 计算机科学 药品 水准点(测量) 鉴定(生物学) 机器学习 人工智能 数据挖掘 数学 医学 药理学 生物 组合数学 地理 程序设计语言 植物 大地测量学
作者
Yijie Ding,Jijun Tang,Fei Guo
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:325: 211-224 被引量:199
标识
DOI:10.1016/j.neucom.2018.10.028
摘要

In medicine research, drug discovery aims to develop a drug to patients who will benefit from it and try to avoid some side effects. However, the tradition experiment is time consuming and expensive. In recent years, computational approaches provide many effective strategies to deal with this issue. In fact, the known associations between drugs and side-effects are less than unknown associations, thus it can be seen as an imbalance classification problem. Although several classification methods have been developed to predict drug-side effect associations, the performance of predictors could also be further improved. In this paper, we propose a novel predictor of drug-side effect associations. First, we construct multiple kernels from drug space and side-effect space, respectively. Then, these corresponding kernels are linear weighted by optimized Centered Kernel Alignment-based Multiple Kernel Learning (CKA-MKL) algorithm in two different spaces. At last, Kronecker Regularized Least Squares (Kronecker RLS) is employed to fuse drug kernel and side-effect kernel, further identify drug-side effect associations. Compared with many existing methods, our proposed approach achieves better results on three benchmark datasets of drug side-effect associations. The values of Area Under the Precision Recall curve (AUPR) are 0.672, 0.679 and 0.675 on Pauwels’s dataset, Mizutani’s dataset and Liu’s dataset, respectively. The AUPRs are improved by at least 0.012, 0.013 and 0.014 on three different datasets. Experimental results show that our method has outstanding performance among other excellent approaches on identifying drug-side effect associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈曦发布了新的文献求助10
刚刚
moon关注了科研通微信公众号
刚刚
lh23发布了新的文献求助10
1秒前
hhh发布了新的文献求助10
2秒前
共享精神应助海比天蓝采纳,获得10
2秒前
3秒前
方方完成签到,获得积分10
3秒前
Rondab应助tjfwg采纳,获得10
3秒前
奥特超曼应助浮生采纳,获得10
3秒前
5秒前
慈祥的水池完成签到,获得积分10
5秒前
李健应助可靠的访冬采纳,获得10
7秒前
7秒前
9秒前
星辰大海应助MEDwhy采纳,获得10
9秒前
聪明夏山应助冷傲山彤采纳,获得10
9秒前
10秒前
黑色土豆发布了新的文献求助10
10秒前
kong发布了新的文献求助10
10秒前
香蕉觅云应助bbh采纳,获得10
11秒前
今后应助bbh采纳,获得10
11秒前
丘比特应助bbh采纳,获得10
11秒前
小马甲应助bbh采纳,获得10
11秒前
kd完成签到,获得积分10
12秒前
文静湘发布了新的文献求助20
12秒前
13秒前
13秒前
Peveril完成签到,获得积分10
14秒前
lh23完成签到,获得积分10
15秒前
Owen应助落寞振家采纳,获得10
15秒前
传奇3应助kanwenxian采纳,获得10
15秒前
15秒前
Katherine发布了新的文献求助10
16秒前
落榜美术生完成签到,获得积分10
17秒前
17秒前
17秒前
18秒前
莫言发布了新的文献求助10
20秒前
moon发布了新的文献求助10
20秒前
帅气的璎完成签到,获得积分10
20秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989589
求助须知:如何正确求助?哪些是违规求助? 3531795
关于积分的说明 11254881
捐赠科研通 3270329
什么是DOI,文献DOI怎么找? 1804966
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176