Identification of drug-side effect association via multiple information integration with centered kernel alignment

核(代数) 副作用(计算机科学) 计算机科学 药品 水准点(测量) 鉴定(生物学) 机器学习 人工智能 数据挖掘 数学 医学 药理学 生物 组合数学 地理 程序设计语言 植物 大地测量学
作者
Yijie Ding,Jijun Tang,Fei Guo
出处
期刊:Neurocomputing [Elsevier]
卷期号:325: 211-224 被引量:199
标识
DOI:10.1016/j.neucom.2018.10.028
摘要

In medicine research, drug discovery aims to develop a drug to patients who will benefit from it and try to avoid some side effects. However, the tradition experiment is time consuming and expensive. In recent years, computational approaches provide many effective strategies to deal with this issue. In fact, the known associations between drugs and side-effects are less than unknown associations, thus it can be seen as an imbalance classification problem. Although several classification methods have been developed to predict drug-side effect associations, the performance of predictors could also be further improved. In this paper, we propose a novel predictor of drug-side effect associations. First, we construct multiple kernels from drug space and side-effect space, respectively. Then, these corresponding kernels are linear weighted by optimized Centered Kernel Alignment-based Multiple Kernel Learning (CKA-MKL) algorithm in two different spaces. At last, Kronecker Regularized Least Squares (Kronecker RLS) is employed to fuse drug kernel and side-effect kernel, further identify drug-side effect associations. Compared with many existing methods, our proposed approach achieves better results on three benchmark datasets of drug side-effect associations. The values of Area Under the Precision Recall curve (AUPR) are 0.672, 0.679 and 0.675 on Pauwels’s dataset, Mizutani’s dataset and Liu’s dataset, respectively. The AUPRs are improved by at least 0.012, 0.013 and 0.014 on three different datasets. Experimental results show that our method has outstanding performance among other excellent approaches on identifying drug-side effect associations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助oyx53采纳,获得10
1秒前
2秒前
tomorrow发布了新的文献求助10
3秒前
3秒前
ffnvv完成签到,获得积分10
3秒前
Akim应助沉静的樱桃采纳,获得10
3秒前
杉杉小趴菜完成签到,获得积分10
3秒前
rationality发布了新的文献求助10
4秒前
青年才俊发布了新的文献求助10
4秒前
4秒前
an完成签到,获得积分20
4秒前
飞翔的鸣发布了新的文献求助10
5秒前
yqx发布了新的文献求助30
5秒前
5秒前
slin_sjtu完成签到,获得积分0
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
闪闪的诗珊应助小葱头采纳,获得50
6秒前
6秒前
Aliangkou完成签到,获得积分10
7秒前
念安发布了新的文献求助10
8秒前
8秒前
Luna完成签到 ,获得积分10
9秒前
老实凝蕊发布了新的文献求助10
9秒前
大个应助Yelouy采纳,获得10
9秒前
oyx53完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
彩色菲鹰发布了新的文献求助10
11秒前
fxx发布了新的文献求助10
11秒前
生动电脑完成签到,获得积分10
12秒前
领导范儿应助糖脎采纳,获得10
12秒前
飞翔的鸣完成签到,获得积分0
13秒前
oyx53发布了新的文献求助10
13秒前
14秒前
15秒前
wu完成签到,获得积分10
15秒前
15秒前
香蕉千风发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776956
求助须知:如何正确求助?哪些是违规求助? 5631393
关于积分的说明 15444543
捐赠科研通 4908967
什么是DOI,文献DOI怎么找? 2641505
邀请新用户注册赠送积分活动 1589491
关于科研通互助平台的介绍 1543995