Identification of drug-side effect association via multiple information integration with centered kernel alignment

核(代数) 副作用(计算机科学) 计算机科学 药品 水准点(测量) 鉴定(生物学) 机器学习 人工智能 数据挖掘 数学 医学 药理学 生物 组合数学 地理 程序设计语言 植物 大地测量学
作者
Yijie Ding,Jijun Tang,Fei Guo
出处
期刊:Neurocomputing [Elsevier BV]
卷期号:325: 211-224 被引量:199
标识
DOI:10.1016/j.neucom.2018.10.028
摘要

In medicine research, drug discovery aims to develop a drug to patients who will benefit from it and try to avoid some side effects. However, the tradition experiment is time consuming and expensive. In recent years, computational approaches provide many effective strategies to deal with this issue. In fact, the known associations between drugs and side-effects are less than unknown associations, thus it can be seen as an imbalance classification problem. Although several classification methods have been developed to predict drug-side effect associations, the performance of predictors could also be further improved. In this paper, we propose a novel predictor of drug-side effect associations. First, we construct multiple kernels from drug space and side-effect space, respectively. Then, these corresponding kernels are linear weighted by optimized Centered Kernel Alignment-based Multiple Kernel Learning (CKA-MKL) algorithm in two different spaces. At last, Kronecker Regularized Least Squares (Kronecker RLS) is employed to fuse drug kernel and side-effect kernel, further identify drug-side effect associations. Compared with many existing methods, our proposed approach achieves better results on three benchmark datasets of drug side-effect associations. The values of Area Under the Precision Recall curve (AUPR) are 0.672, 0.679 and 0.675 on Pauwels’s dataset, Mizutani’s dataset and Liu’s dataset, respectively. The AUPRs are improved by at least 0.012, 0.013 and 0.014 on three different datasets. Experimental results show that our method has outstanding performance among other excellent approaches on identifying drug-side effect associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wzz完成签到,获得积分10
1秒前
1秒前
大力的诗蕾完成签到,获得积分10
1秒前
浮游应助666采纳,获得10
1秒前
2秒前
2秒前
TT发布了新的文献求助10
4秒前
4秒前
Secret_不能说的秘密完成签到,获得积分10
4秒前
5秒前
6秒前
满意又蓝完成签到,获得积分10
6秒前
ccccchen完成签到,获得积分10
7秒前
二三发布了新的文献求助10
7秒前
小牛马发布了新的文献求助10
8秒前
9秒前
ccccchen发布了新的文献求助10
10秒前
李月月完成签到 ,获得积分10
10秒前
12秒前
14秒前
yuna_yqc完成签到,获得积分10
14秒前
科研通AI6应助yuki采纳,获得150
14秒前
Qi完成签到 ,获得积分10
16秒前
子车茗应助清水采纳,获得30
17秒前
wxt发布了新的文献求助10
19秒前
liv发布了新的文献求助10
19秒前
20秒前
20秒前
正直尔容完成签到,获得积分10
21秒前
王政完成签到,获得积分10
21秒前
小牛马发布了新的文献求助10
21秒前
apiaji应助等待的谷波采纳,获得20
22秒前
22秒前
aikey完成签到 ,获得积分10
22秒前
Owen应助GAOBIN000采纳,获得10
23秒前
孙小雨完成签到,获得积分10
25秒前
正直尔容发布了新的文献求助30
26秒前
细腻的灵槐完成签到 ,获得积分10
27秒前
lr发布了新的文献求助10
27秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
The Emotional Life of Organisations 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5215173
求助须知:如何正确求助?哪些是违规求助? 4390347
关于积分的说明 13669789
捐赠科研通 4252118
什么是DOI,文献DOI怎么找? 2333003
邀请新用户注册赠送积分活动 1330607
关于科研通互助平台的介绍 1284382