Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss

雅卡索引 骨关节炎 卷积神经网络 计算机科学 分级(工程) 人工智能 膝关节 模式识别(心理学) 深度学习 医学 外科 病理 工程类 土木工程 替代医学
作者
Pingjun Chen,Linlin Gao,Xiaoshuang Shi,Kyle D. Allen,Lin Yang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier BV]
卷期号:75: 84-92 被引量:160
标识
DOI:10.1016/j.compmedimag.2019.06.002
摘要

Knee osteoarthritis (OA) is one major cause of activity limitation and physical disability in older adults. Early detection and intervention can help slow down the OA degeneration. Physicians' grading based on visual inspection is subjective, varied across interpreters, and highly relied on their experience. In this paper, we successively apply two deep convolutional neural networks (CNN) to automatically measure the knee OA severity, as assessed by the Kellgren-Lawrence (KL) grading system. Firstly, considering the size of knee joints distributed in X-ray images with small variability, we detect knee joints using a customized one-stage YOLOv2 network. Secondly, we fine-tune the most popular CNN models, including variants of ResNet, VGG, and DenseNet as well as InceptionV3, to classify the detected knee joint images with a novel adjustable ordinal loss. To be specific, motivated by the ordinal nature of the knee KL grading task, we assign higher penalty to misclassification with larger distance between the predicted KL grade and the real KL grade. The baseline X-ray images from the Osteoarthritis Initiative (OAI) dataset are used for evaluation. On the knee joint detection, we achieve mean Jaccard index of 0.858 and recall of 92.2% under the Jaccard index threshold of 0.75. On the knee KL grading task, the fine-tuned VGG-19 model with the proposed ordinal loss obtains the best classification accuracy of 69.7% and mean absolute error (MAE) of 0.344. Both knee joint detection and knee KL grading achieve state-of-the-art performance. The code, dataset, and models are released at https://github.com/PingjunChen/KneeAnalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑眼圈发布了新的文献求助10
刚刚
娇气的又夏完成签到,获得积分10
2秒前
2秒前
yyyyyyyyyy发布了新的文献求助20
2秒前
5秒前
扶瑶可接发布了新的文献求助10
5秒前
xl发布了新的文献求助10
10秒前
田様应助司马雨泽采纳,获得10
11秒前
yyyyyyyyyy完成签到,获得积分10
11秒前
糊涂的箴完成签到,获得积分10
13秒前
xl完成签到,获得积分10
16秒前
18秒前
Nick完成签到,获得积分0
18秒前
SYLH应助达克赛德采纳,获得10
18秒前
青山落日秋月春风完成签到,获得积分10
19秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
Jasper应助吴小苏采纳,获得10
20秒前
21秒前
22秒前
杭谷波完成签到,获得积分10
23秒前
黑眼圈发布了新的文献求助10
24秒前
CipherSage应助仿生人采纳,获得10
24秒前
XU发布了新的文献求助10
25秒前
yznfly应助糊涂的箴采纳,获得30
25秒前
司马雨泽发布了新的文献求助10
26秒前
30秒前
所所应助科研通管家采纳,获得30
30秒前
英俊的铭应助科研通管家采纳,获得10
30秒前
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
天天快乐应助科研通管家采纳,获得10
31秒前
深情安青应助科研通管家采纳,获得10
31秒前
领导范儿应助科研通管家采纳,获得10
31秒前
CodeCraft应助科研通管家采纳,获得10
31秒前
CodeCraft应助科研通管家采纳,获得10
31秒前
科目三应助科研通管家采纳,获得10
31秒前
慕青应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959401
求助须知:如何正确求助?哪些是违规求助? 3505622
关于积分的说明 11124998
捐赠科研通 3237410
什么是DOI,文献DOI怎么找? 1789120
邀请新用户注册赠送积分活动 871577
科研通“疑难数据库(出版商)”最低求助积分说明 802844