清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Fully automatic knee osteoarthritis severity grading using deep neural networks with a novel ordinal loss

雅卡索引 骨关节炎 卷积神经网络 计算机科学 分级(工程) 人工智能 膝关节 模式识别(心理学) 深度学习 医学 外科 病理 工程类 土木工程 替代医学
作者
Pingjun Chen,Linlin Gao,Xiaoshuang Shi,Kyle D. Allen,Lin Yang
出处
期刊:Computerized Medical Imaging and Graphics [Elsevier]
卷期号:75: 84-92 被引量:160
标识
DOI:10.1016/j.compmedimag.2019.06.002
摘要

Knee osteoarthritis (OA) is one major cause of activity limitation and physical disability in older adults. Early detection and intervention can help slow down the OA degeneration. Physicians' grading based on visual inspection is subjective, varied across interpreters, and highly relied on their experience. In this paper, we successively apply two deep convolutional neural networks (CNN) to automatically measure the knee OA severity, as assessed by the Kellgren-Lawrence (KL) grading system. Firstly, considering the size of knee joints distributed in X-ray images with small variability, we detect knee joints using a customized one-stage YOLOv2 network. Secondly, we fine-tune the most popular CNN models, including variants of ResNet, VGG, and DenseNet as well as InceptionV3, to classify the detected knee joint images with a novel adjustable ordinal loss. To be specific, motivated by the ordinal nature of the knee KL grading task, we assign higher penalty to misclassification with larger distance between the predicted KL grade and the real KL grade. The baseline X-ray images from the Osteoarthritis Initiative (OAI) dataset are used for evaluation. On the knee joint detection, we achieve mean Jaccard index of 0.858 and recall of 92.2% under the Jaccard index threshold of 0.75. On the knee KL grading task, the fine-tuned VGG-19 model with the proposed ordinal loss obtains the best classification accuracy of 69.7% and mean absolute error (MAE) of 0.344. Both knee joint detection and knee KL grading achieve state-of-the-art performance. The code, dataset, and models are released at https://github.com/PingjunChen/KneeAnalysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Criminology34应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
科研通AI6应助科研通管家采纳,获得10
12秒前
hxz完成签到 ,获得积分10
39秒前
mufcyang发布了新的文献求助10
1分钟前
gszy1975完成签到,获得积分10
1分钟前
mufcyang发布了新的文献求助10
1分钟前
陈艺杨完成签到 ,获得积分10
1分钟前
1分钟前
mufcyang发布了新的文献求助10
1分钟前
生动的迎夏完成签到,获得积分20
2分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
Criminology34应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
落后的乌龟完成签到,获得积分10
2分钟前
上官若男应助fhzy采纳,获得10
2分钟前
共享精神应助落后的乌龟采纳,获得10
2分钟前
3分钟前
tt完成签到,获得积分10
3分钟前
3分钟前
完美世界应助小小K采纳,获得10
3分钟前
3分钟前
葛力完成签到,获得积分10
3分钟前
3分钟前
小小K发布了新的文献求助10
3分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
OSASACB完成签到 ,获得积分10
4分钟前
傻傻的哈密瓜完成签到,获得积分10
4分钟前
4分钟前
123发布了新的文献求助10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755552
求助须知:如何正确求助?哪些是违规求助? 5496349
关于积分的说明 15381307
捐赠科研通 4893541
什么是DOI,文献DOI怎么找? 2632204
邀请新用户注册赠送积分活动 1580085
关于科研通互助平台的介绍 1535939