材料科学
复合材料
热导率
导电体
碳纳米管
热的
传热
聚二甲基硅氧烷
复合数
热传递
热桥
热传导
保温
气象学
物理
墨水池
图层(电子)
热力学
作者
Xiao Hou,Yapeng Chen,Wen Dai,Li Wang,He Li,Cheng‐Te Lin,Kazuhito Nishimura,Nan Jiang,Jinhong Yu
标识
DOI:10.1016/j.cej.2019.121921
摘要
The high integration and high power devices cause serious local heat accumulation, which will damage the reliability and service life of devices. Efficient heat dissipation has become priority issues for electronic devices. As a one-dimension thermal conductive fillers, carbon fibers (CFs) exhibits ultra-high thermal conductive performance. However, the superiority is not fully utilized by traditional approaches especially for short CFs. In this work, a micro-phragmites communis structure was constructed for enhance thermal transfer property of composites. And the composites were obtained by immersed in polydimethylsiloxane (PDMS) with vacuum-assisted. Owing to vertical CFs structure, the through-plane thermal conductivity of polymer composites achieving 6.04 W m−1 K−1 at low CFs loading. Further, the surface temperature variation of composites in heating and cooling process was observed by infrared camera, and it exhibits excellent heat transfer performance. The applicability of the high thermal conductive composite was investigated by applied in CPU heat dissipation. This work reveals promising approaches for fully utilize the ultra-high axes thermal conductivity of CFs to prepared high thermal conductive composites.
科研通智能强力驱动
Strongly Powered by AbleSci AI