Machine Learning–Assisted System for Thyroid Nodule Diagnosis

医学 甲状腺 置信区间 弹性成像 结核(地质) 甲状腺结节 机器学习 超声波 恶性肿瘤 甲状腺切除术 人工智能 鉴别诊断 曲线下面积 放射科 算法 计算机科学 内科学 病理 古生物学 药代动力学 生物
作者
Bin Zhang,Jie Tian,Shufang Pei,Yubing Chen,Xin He,Yuhao Dong,Lu Zhang,Xiaokai Mo,Wenhui Huang,Shuzhen Cong,Shuixing Zhang
出处
期刊:Thyroid [Mary Ann Liebert]
卷期号:29 (6): 858-867 被引量:91
标识
DOI:10.1089/thy.2018.0380
摘要

Background: Ultrasound (US) examination is helpful in the differential diagnosis of thyroid nodules (malignant vs. benign), but its accuracy relies heavily on examiner experience. Therefore, the aim of this study was to develop a less subjective diagnostic model aided by machine learning. Methods: A total of 2064 thyroid nodules (2032 patients, 695 male; Mage = 45.25 ± 13.49 years) met all of the following inclusion criteria: (i) hemi- or total thyroidectomy, (ii) maximum nodule diameter 2.5 cm, (iii) examination by conventional US and real-time elastography within one month before surgery, and (iv) no previous thyroid surgery or percutaneous thermotherapy. Models were developed using 60% of randomly selected samples based on nine commonly used algorithms, and validated using the remaining 40% of cases. All models function with a validation data set that has a pretest probability of malignancy of 10%. The models were refined with machine learning that consisted of 1000 repetitions of derivatization and validation, and compared to diagnosis by an experienced radiologist. Sensitivity, specificity, accuracy, and area under the curve (AUC) were calculated. Results: A random forest algorithm led to the best diagnostic model, which performed better than radiologist diagnosis based on conventional US only (AUC = 0.924 [confidence interval (CI) 0.895–0.953] vs. 0.834 [CI 0.815–0.853]) and based on both conventional US and real-time elastography (AUC = 0.938 [CI 0.914–0.961] vs. 0.843 [CI 0.829–0.857]). Conclusions: Machine-learning algorithms based on US examinations, particularly the random forest classifier, may diagnose malignant thyroid nodules better than radiologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rixxed完成签到,获得积分10
1秒前
充电宝应助titamisulydia采纳,获得20
1秒前
酷波er应助奋斗的蜗牛采纳,获得10
1秒前
3秒前
4秒前
6rkuttsmdt完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
bkagyin应助wxyllxx采纳,获得10
6秒前
6秒前
不配.应助Amy采纳,获得10
6秒前
6秒前
小马日常挨打完成签到 ,获得积分10
6秒前
完美的天空应助考研小白采纳,获得30
7秒前
7秒前
瘦瘦冬寒完成签到 ,获得积分10
7秒前
9秒前
秋中雨发布了新的文献求助10
9秒前
WJ1989发布了新的文献求助10
9秒前
asdfj给asdfj的求助进行了留言
10秒前
你是谁发布了新的文献求助10
10秒前
JXY发布了新的文献求助10
10秒前
11秒前
孙星发布了新的文献求助10
11秒前
英俊的铭应助ww采纳,获得10
12秒前
12秒前
13秒前
斯文败类应助典雅的宛菡采纳,获得10
13秒前
13秒前
14秒前
15秒前
cici完成签到,获得积分10
15秒前
香蕉觅云应助淡定鸿涛采纳,获得10
15秒前
考研小白完成签到,获得积分20
16秒前
吴彦祖发布了新的文献求助10
16秒前
勤劳雁发布了新的文献求助10
16秒前
Dawn发布了新的文献求助10
17秒前
大F完成签到,获得积分10
17秒前
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135520
求助须知:如何正确求助?哪些是违规求助? 2786434
关于积分的说明 7777268
捐赠科研通 2442340
什么是DOI,文献DOI怎么找? 1298524
科研通“疑难数据库(出版商)”最低求助积分说明 625143
版权声明 600847