清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Emerging Links between Lipid Droplets and Motor Neuron Diseases

生物 神经退行性变 神经科学 运动神经元 平衡 细胞生物学 能量稳态 肌萎缩侧索硬化 疾病 神经元 内分泌学 内科学 脊髓 医学 肥胖
作者
Giuseppa Pennetta,Michael A. Welte
出处
期刊:Developmental Cell [Elsevier]
卷期号:45 (4): 427-432 被引量:84
标识
DOI:10.1016/j.devcel.2018.05.002
摘要

Lipid droplets (LDs) are ubiquitous fat storage organelles and play key roles in lipid metabolism and energy homeostasis; in addition, they contribute to protein storage, folding, and degradation. However, a role for LDs in the nervous system remains largely unexplored. We discuss evidence supporting an intimate functional connection between LDs and motor neuron disease (MND) pathophysiology, examining how LD functions in systemic energy homeostasis, in neuron-glia metabolic coupling, and in protein folding and clearance may affect or contribute to disease pathology. An integrated understanding of LD biology and neurodegeneration may open the way for new therapeutic interventions. Lipid droplets (LDs) are ubiquitous fat storage organelles and play key roles in lipid metabolism and energy homeostasis; in addition, they contribute to protein storage, folding, and degradation. However, a role for LDs in the nervous system remains largely unexplored. We discuss evidence supporting an intimate functional connection between LDs and motor neuron disease (MND) pathophysiology, examining how LD functions in systemic energy homeostasis, in neuron-glia metabolic coupling, and in protein folding and clearance may affect or contribute to disease pathology. An integrated understanding of LD biology and neurodegeneration may open the way for new therapeutic interventions. Motor neuron diseases (MNDs) are characterized by the gradual degeneration and death of motor neurons (MNs), resulting in progressive paralysis and muscle atrophy. Amyotrophic lateral sclerosis (ALS) is a fatal disease and the most common MND, with a worldwide annual incidence of ∼1.9 per 100,000 individuals (Arthur et al., 2016Arthur K.C. Calvo A. Price T.R. Geiger J.T. Chiò A. Traynor B.J. Projected increase in amyotrophic lateral sclerosis from 2015 to 2040.Nat. Commun. 2016; 7: 12408Crossref PubMed Scopus (215) Google Scholar). A plethora of genes with causative roles in ALS have been identified (Renton et al., 2014Renton A.E. Chiò A. Traynor B.J. State of play in amyotrophic lateral sclerosis genetics.Nat. Neurosci. 2014; 17: 17-23Crossref PubMed Scopus (1035) Google Scholar). Among the cellular processes implicated in ALS pathophysiology are ER stress and protein clearance, neuron-glia metabolic coupling, and energy homeostasis (Schmitt et al., 2014Schmitt F. Hussain G. Dupuis L. Loeffler J.P. Henriques A. A plural role for lipids in motor neuron diseases: energy, signaling and structure.Front. Cell. Neurosci. 2014; 8: 25Crossref PubMed Scopus (77) Google Scholar, Taylor et al., 2016Taylor J.P. Brown Jr., R.H. Cleveland D.W. Decoding ALS: from genes to mechanism.Nature. 2016; 539: 197-206Crossref PubMed Scopus (1093) Google Scholar). However, how alterations in these processes contribute to the disease remains poorly understood. Recently, connections have emerged between MNDs, including ALS, and lipid droplets (LDs), the cellular organelles for fat storage, possibly providing a new perspective for understanding disease-related mechanisms. LDs are ubiquitous organelles with a unique structure: a core of neutral lipids (triacylglycerols [TAGs] and sterol esters) surrounded by a monolayer of phospholipids and proteins. LDs originate from the ER, and, when lipids are needed, they are turned over by cytoplasmic lipases and autophagy. Mechanisms and regulation of LD biogenesis, growth, and turnover are active areas of investigation (Qi et al., 2017Qi Y. Sun L. Yang H. Lipid droplet growth and adipocyte development: mechanistically distinct processes connected by phospholipids.Biochim. Biophys. Acta. 2017; 1862: 1273-1283Crossref PubMed Scopus (21) Google Scholar, Schulze et al., 2017Schulze R.J. Sathyanarayan A. Mashek D.G. Breaking fat: The regulation and mechanisms of lipophagy.Biochim. Biophys. Acta. 2017; 1862: 1178-1187Crossref PubMed Scopus (133) Google Scholar, Walther et al., 2017Walther T.C. Chung J. Farese Jr., R.V. Lipid droplet biogenesis.Annu. Rev. Cell Dev. Biol. 2017; 33: 491-510Crossref PubMed Scopus (342) Google Scholar). LDs play critical roles in cellular processes also implicated in ALS pathophysiology. Foremost is their role in energy homeostasis, because they provide fatty acid (FA) fuel for ATP production. Emerging evidence also links LDs to neuron-glia metabolic coupling (Liu et al., 2017Liu L. MacKenzie K.R. Putluri N. Maletić-Savatić M. Bellen H.J. The glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D.Cell Metab. 2017; 26: 719-737.e6Abstract Full Text Full Text PDF PubMed Scopus (210) Google Scholar). Furthermore, LDs are involved in the resolution of ER stress and the clearing of protein aggregates (Welte, 2015Welte M.A. Expanding roles for lipid droplets.Curr. Biol. 2015; 25: R470-R481Abstract Full Text Full Text PDF PubMed Scopus (318) Google Scholar, Welte and Gould, 2017Welte M.A. Gould A.P. Lipid droplet functions beyond energy storage.Biochim. Biophys. Acta. 2017; 1862: 1260-1272Crossref PubMed Scopus (271) Google Scholar). Genetic studies suggest that this overlap between LD functions and cellular processes implicated in ALS is not mere happenstance: many genes responsible for ALS, as well as for the MND hereditary spastic paraplegia (HSP), play important roles in LD biology; on the other hand, disruption of lipid metabolism and energy homeostasis are prevalent in ALS (see below; Schmitt et al., 2014Schmitt F. Hussain G. Dupuis L. Loeffler J.P. Henriques A. A plural role for lipids in motor neuron diseases: energy, signaling and structure.Front. Cell. Neurosci. 2014; 8: 25Crossref PubMed Scopus (77) Google Scholar). Here we discuss the role of LDs in energy homeostasis, glia-neuron metabolic coupling, and protein aggregation and clearance, and we formulate mechanistic hypotheses on how disruption of these LD-mediated processes could contribute to ALS pathophysiology. Although additional studies are needed to assess the specific role of LDs in ALS and other MNDs, it is conceivable that targeting LD-related processes might lead to new therapies for these devastating diseases. Neurons have extremely high energy demands, and LDs are crucial for energy homeostasis in most cells. Might LD dysfunction promote neurodegeneration by disrupting the energy metabolism of neurons? At first glance, such a scenario seems unlikely because neurons derive much of their energy from glucose. However, when glucose is limiting, neurons use energy-rich substrates ultimately derived from the breakdown of FAs. Below, we discuss how LDs in various tissues across the organism could metabolically support MNs. We then contrast this systemic role with a local function in which LDs in glia provide fuel for neighboring neurons. Finally, we consider whether LD functions beyond energy metabolism could directly affect MNs. The brain lacks fuel stores and relies on a continuous supply of glucose from peripheral organs, especially the liver. When glucose is scarce, the liver coverts Acetyl-CoA produced during FA β oxidation into ketone bodies (KBs). KBs are transported through the bloodstream to the brain, where they are oxidized to produce energy. FAs metabolized in the liver are, in turn, replenished from dietary lipids in the gut or from lipids stored in adipose tissue. In all of these tissues, FAs are stored as TAGs in LDs; thus, LD dysfunction could indirectly impact MNs. This notion is attractive because many ALS genes are ubiquitously expressed, and non-cell-autonomous processes can contribute to neuronal damage in ALS (Ilieva et al., 2009Ilieva H. Polymenidou M. Cleveland D.W. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond.J. Cell Biol. 2009; 187: 761-772Crossref PubMed Scopus (788) Google Scholar). A link between ALS and disrupted organismal lipid metabolism is suggested by emerging data on TDP-43, a ubiquitous protein encoded by the ALS10 gene. TDP-43-mediated ALS may be caused by loss of its normal function, gain of new toxic functions, or possibly a combination of both (Polymenidou and Cleveland, 2017Polymenidou M. Cleveland D.W. Biological spectrum of amyotrophic lateral sclerosis prions.Cold Spring Harb. Perspect. Med. 2017; 7: a024133Crossref PubMed Scopus (17) Google Scholar, Robberecht and Philips, 2013Robberecht W. Philips T. The changing scene of amyotrophic lateral sclerosis.Nat. Rev. Neurosci. 2013; 14: 248-264Crossref PubMed Scopus (717) Google Scholar). TDP-43-overexpressing mice display neurological symptoms, motor deficits, increased fat accumulation, and adipocyte hypertrophy (Stallings et al., 2013Stallings N.R. Puttaparthi K. Dowling K.J. Luther C.M. Burns D.K. Davis K. Elliott J.L. TDP-43, an ALS linked protein, regulates fat deposition and glucose homeostasis.PLoS One. 2013; 8: e71793Crossref PubMed Scopus (63) Google Scholar). Depleting TDP-43 postnatally in mice causes weight loss, body fat reduction, decreased adipocyte LD content, increased FA consumption, and rapid death (Chiang et al., 2010Chiang P.M. Ling J. Jeong Y.H. Price D.L. Aja S.M. Wong P.C. Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism.Proc. Natl. Acad. Sci. USA. 2010; 107: 16320-16324Crossref PubMed Scopus (216) Google Scholar). What is the mechanistic basis for these profound physiological changes? In skeletal muscles, TDP-43 depletion blocks insulin-induced trafficking of the glucose transporter Glut4 to the plasma membrane by downregulating the Rab-GTPase-activating protein TBC1D1. Consequently, impairment in glucose uptake induces a metabolic switch toward lipids for energy production. Elevated FA consumption and oxidation by skeletal muscles presumably explain increased fat mobilization from adipose tissue (Chadt et al., 2008Chadt A. Leicht K. Deshmukh A. Jiang L.Q. Scherneck S. Bernhardt U. Dreja T. Vogel H. Schmolz K. Kluge R. et al.Tbc1d1 mutation in lean mouse strain confers leanness and protects from diet-induced obesity.Nat. Genet. 2008; 40: 1354-1359Crossref PubMed Scopus (165) Google Scholar, Chiang et al., 2010Chiang P.M. Ling J. Jeong Y.H. Price D.L. Aja S.M. Wong P.C. Deletion of TDP-43 down-regulates Tbc1d1, a gene linked to obesity, and alters body fat metabolism.Proc. Natl. Acad. Sci. USA. 2010; 107: 16320-16324Crossref PubMed Scopus (216) Google Scholar). We speculate that TBC1D1 might even affect fat storage directly, because the related isoform AS160/TBC1D4 regulates both Glut4 translocation and LD growth in adipocytes (Wu et al., 2014Wu L. Xu D. Zhou L. Xie B. Yu L. Yang H. Huang L. Ye J. Deng H. Yuan Y.A. et al.Rab8a-AS160-MSS4 regulatory circuit controls lipid droplet fusion and growth.Dev. Cell. 2014; 30: 378-393Abstract Full Text Full Text PDF PubMed Scopus (80) Google Scholar). In a yeast model for ALS, TDP-43 toxicity is enhanced by depletion of seipin (Armakola et al., 2012Armakola M. Higgins M.J. Figley M.D. Barmada S.J. Scarborough E.A. Diaz Z. Fang X. Shorter J. Krogan N.J. Finkbeiner S. et al.Inhibition of RNA lariat debranching enzyme suppresses TDP-43 toxicity in ALS disease models.Nat. Genet. 2012; 44: 1302-1309Crossref PubMed Scopus (182) Google Scholar). Seipin has a prominent role in LD biogenesis and growth and is the causative gene of two MN disorders: distal hereditary motor neuropathy type V (dHMN-V) and Silver syndrome (Welte, 2015Welte M.A. Expanding roles for lipid droplets.Curr. Biol. 2015; 25: R470-R481Abstract Full Text Full Text PDF PubMed Scopus (318) Google Scholar). Intriguingly, the hVAPB/ALS8 gene also controls Glut4 trafficking, both in myoblasts and adipocytes, and affects LD size, number, and composition (Al-Anzi et al., 2015Al-Anzi B. Arpp P. Gerges S. Ormerod C. Olsman N. Zinn K. Experimental and computational analysis of a large protein network that controls fat storage reveals thse design principles of a signaling network.PLoS Comput. Biol. 2015; 11: e1004264Crossref PubMed Scopus (6) Google Scholar, Foster et al., 2000Foster L.J. Weir M.L. Lim D.Y. Liu Z. Trimble W.S. Klip A. A functional role for VAP-33 in insulin-stimulated GLUT4 traffic.Traffic. 2000; 1: 512-521Crossref PubMed Scopus (69) Google Scholar, Jansen et al., 2011Jansen M. Ohsaki Y. Rega L.R. Bittman R. Olkkonen V.M. Ikonen E. Role of ORPs in sterol transport from plasma membrane to ER and lipid droplets in mammalian cells.Traffic. 2011; 12: 218-231Crossref PubMed Scopus (76) Google Scholar). Mutations in genes controlling LD biogenesis and dynamics modify ALS8 phenotypes in flies (Sanhueza et al., 2015Sanhueza M. Chai A. Smith C. McCray B.A. Simpson T.I. Taylor J.P. Pennetta G. Network analyses reveal novel aspects of ALS pathogenesis.PLoS Genet. 2015; 11: e1005107Crossref PubMed Scopus (38) Google Scholar), and in C. elegans and mice, VAPB depletion induces LD accumulation and clustering in muscles (Han et al., 2013Han S.M. El Oussini H. Scekic-Zahirovic J. Vibbert J. Cottee P. Prasain J.K. Bellen H.J. Dupuis L. Miller M.A. VAPB/ALS8 MSP ligands regulate striated muscle energy metabolism critical for adult survival in caenorhabditis elegans.PLoS Genet. 2013; 9: e1003738Crossref PubMed Scopus (29) Google Scholar). In humans, mutations in spatacsin cause ALS and the MND HSP11, and its loss in mice induces MN degeneration, muscle atrophy, and a decrease in the steady-state number of LDs, possibly due to defective clearance of lipids by lysosomes (Branchu et al., 2017Branchu J. Boutry M. Sourd L. Depp M. Leone C. Corriger A. Vallucci M. Esteves T. Matusiak R. Dumont M. et al.Loss of spatacsin function alters lysosomal lipid clearance leading to upper and lower motor neuron degeneration.Neurobiol. Dis. 2017; 102: 21-37Crossref PubMed Scopus (59) Google Scholar). Evidence pointing to a metabolic switch from glucose toward lipids is also emerging in SOD1 mouse models of ALS: their spinal cord neurons display decreased glucose usage (Miyazaki et al., 2012Miyazaki K. Masamoto K. Morimoto N. Kurata T. Mimoto T. Obata T. Kanno I. Abe K. Early and progressive impairment of spinal blood flow-glucose metabolism coupling in motor neuron degeneration of ALS model mice.J. Cereb. Blood Flow Metab. 2012; 32: 456-467Crossref PubMed Scopus (55) Google Scholar), and a fat-rich diet restores normal body mass, delays disease onset and MN degeneration, and extends life expectancy (Schmitt et al., 2014Schmitt F. Hussain G. Dupuis L. Loeffler J.P. Henriques A. A plural role for lipids in motor neuron diseases: energy, signaling and structure.Front. Cell. Neurosci. 2014; 8: 25Crossref PubMed Scopus (77) Google Scholar). Consistent with a change in fuel preference in SOD1 mice, denervation of glycolytic muscle fibers, an early pre-symptomatic event, is preceded by increased expression of lipid-handling genes (Palamiuc et al., 2015Palamiuc L. Schlagowski A. Ngo S.T. Vernay A. Dirrig-Grosch S. Henriques A. Boutillier A.L. Zoll J. Echaniz-Laguna A. Loeffler J.P. René F. A metabolic switch toward lipid use in glycolytic muscle is an early pathologic event in a mouse model of amyotrophic lateral sclerosis.EMBO Mol. Med. 2015; 7: 526-546Crossref PubMed Scopus (135) Google Scholar). Increased FA requirements may explain why hyperlipidaemia positively correlates with survival in ALS patients and why they exhibit enhanced circulating levels of KBs (Schmitt et al., 2014Schmitt F. Hussain G. Dupuis L. Loeffler J.P. Henriques A. A plural role for lipids in motor neuron diseases: energy, signaling and structure.Front. Cell. Neurosci. 2014; 8: 25Crossref PubMed Scopus (77) Google Scholar). Collectively, emerging evidence links ALS to systemic disruption of lipid metabolism (Figure 1A), though it remains to be established whether LD defects contribute to disease pathology or play more direct causative roles. We propose that LD dysfunction in various peripheral organs could throttle energy delivery to neurons and muscles, an energy supply these cells depend on under disease conditions. Neurons also derive fuel substrates from glia. According to the astrocyte-neuron lactate shuttle hypothesis, under conditions of intense neuronal activity, astrocytes—a type of glia—deliver glucose-derived lactate to neurons for ATP production (Bélanger et al., 2011Bélanger M. Allaman I. Magistretti P.J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation.Cell Metab. 2011; 14: 724-738Abstract Full Text Full Text PDF PubMed Scopus (1338) Google Scholar). Neurons can also receive lactate from oligodendrocytes (glial cells in the CNS that myelinate axons) via monocarboxylate transporters (MCTs). MCT1 ablation leads to axon damage and neuronal degeneration, and MCT1 levels are reduced in affected brain regions from ALS patients and in SOD1 mouse models of ALS (Lee et al., 2012Lee Y. Morrison B.M. Li Y. Lengacher S. Farah M.H. Hoffman P.N. Liu Y. Tsingalia A. Jin L. Zhang P.W. et al.Oligodendroglia metabolically support axons and contribute to neurodegeneration.Nature. 2012; 487: 443-448Crossref PubMed Scopus (1046) Google Scholar). Intriguingly, MCTs can also transport KBs (Halestrap, 2012Halestrap A.P. The monocarboxylate transporter family--Structure and functional characterization.IUBMB Life. 2012; 64: 1-9Crossref PubMed Scopus (440) Google Scholar), and emerging evidence suggests that glia provide KBs as fuel to neurons, suggesting a link between LDs and ALS. KBs are largely supplied by the liver; but, like hepatocytes, astrocytes use FAs as primary metabolic fuel and produce large amounts of KBs using a ketogenic machinery that is similar in both cell types (Guzmán and Blázquez, 2001Guzmán M. Blázquez C. Is there an astrocyte-neuron ketone body shuttle?.Trends Endocrinol. Metab. 2001; 12: 169-173Abstract Full Text Full Text PDF PubMed Scopus (157) Google Scholar). This machinery requires the sequential action of three enzymes to transport FAs from the cytosol to the mitochondrial matrix. CPT1 (carnitine-palmitoyltransferase1) on the outer mitochondrial membrane conjugates carnitine with FAs; CACT (carnitine-acylcarnitine translocase) transfers acylcarnitine across the inner mitochondrial membrane where CPT2 conjugates FAs back to Coenzyme-A for subsequent β oxidation. Inside mitochondria, acetyl moieties condense to generate KBs. In vivo, loss of CPT2 leads to increased starvation sensitivity and reduced lifespan of Drosophila adults. Because these phenotypes are reversed by selectively restoring CPT2 expression in glia, it was proposed that KB production and release from glia help power the brain (Schulz et al., 2015Schulz J.G. Laranjeira A. Van Huffel L. Gärtner A. Vilain S. Bastianen J. Van Veldhoven P.P. Dotti C.G. Glial β-oxidation regulates Drosophila energy metabolism.Sci. Rep. 2015; 5: 7805Crossref PubMed Scopus (41) Google Scholar). Together, these observations support a model in which disruption of KB production from LD-derived lipids or of their delivery may impact energy-dependent processes important for MN function and survival (Figure 1B). Consistent with this idea, inactivation of CTP2 in Drosophila leads to selective accumulation of LDs in glia, and glia-specific CPT2 expression reverses this phenotype (Schulz et al., 2015Schulz J.G. Laranjeira A. Van Huffel L. Gärtner A. Vilain S. Bastianen J. Van Veldhoven P.P. Dotti C.G. Glial β-oxidation regulates Drosophila energy metabolism.Sci. Rep. 2015; 5: 7805Crossref PubMed Scopus (41) Google Scholar). Although it used to be controversial whether neuronal LDs exist at all, they have now been clearly identified in axons of Aplysia (Savage et al., 1987Savage M.J. Goldberg D.J. Schacher S. Absolute specificity for retrograde fast axonal transport displayed by lipid droplets originating in the axon of an identified Aplysia neuron in vitro.Brain Res. 1987; 406: 215-223Crossref PubMed Scopus (14) Google Scholar), neuronal cultures and brain sections of Huntington's disease models (Martinez-Vicente et al., 2010Martinez-Vicente M. Talloczy Z. Wong E. Tang G. Koga H. Kaushik S. de Vries R. Arias E. Harris S. Sulzer D. Cuervo A.M. Cargo recognition failure is responsible for inefficient autophagy in Huntington's disease.Nat. Neurosci. 2010; 13: 567-576Crossref PubMed Scopus (620) Google Scholar), cerebral cortex neurons (Renvoisé et al., 2016Renvoisé B. Malone B. Falgairolle M. Munasinghe J. Stadler J. Sibilla C. Park S.H. Blackstone C. Reep1 null mice reveal a converging role for hereditary spastic paraplegia proteins in lipid droplet regulation.Hum. Mol. Genet. 2016; 25: 5111-5125PubMed Google Scholar), MN axons of Drosophila larvae (Papadopoulos et al., 2015Papadopoulos C. Orso G. Mancuso G. Herholz M. Gumeni S. Tadepalle N. Jüngst C. Tzschichholz A. Schauss A. Höning S. et al.Spastin binds to lipid droplets and affects lipid metabolism.PLoS Genet. 2015; 11: e1005149Crossref PubMed Scopus (70) Google Scholar), and neuroblastoma cell lines (Hölttä-Vuori et al., 2013Hölttä-Vuori M. Salo V.T. Ohsaki Y. Suster M.L. Ikonen E. Alleviation of seipinopathy-related ER stress by triglyceride storage.Hum. Mol. Genet. 2013; 22: 1157-1166Crossref PubMed Scopus (31) Google Scholar). Presence and abundance of neuronal LDs vary tremendously and may depend on variables such as developmental stage, nutrient conditions, or environmental conditions. In Drosophila glia, for example, LDs are induced by hypoxia in larvae (Bailey et al., 2015Bailey A.P. Koster G. Guillermier C. Hirst E.M. MacRae J.I. Lechene C.P. Postle A.D. Gould A.P. Antioxidant role for lipid droplets in a stem cell niche of drosophila.Cell. 2015; 163: 340-353Abstract Full Text Full Text PDF PubMed Scopus (300) Google Scholar) and by neurodegeneration in adults (Liu et al., 2015Liu L. Zhang K. Sandoval H. Yamamoto S. Jaiswal M. Sanz E. Li Z. Hui J. Graham B.H. Quintana A. Bellen H.J. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration.Cell. 2015; 160: 177-190Abstract Full Text Full Text PDF PubMed Scopus (425) Google Scholar). Sex-related differences in FA metabolism (Bakewell et al., 2006Bakewell L. Burdge G.C. Calder P.C. Polyunsaturated fatty acid concentrations in young men and women consuming their habitual diets.Br. J. Nutr. 2006; 96: 93-99Crossref PubMed Scopus (128) Google Scholar, Hoyenga and Hoyenga, 1982Hoyenga K.B. Hoyenga K.T. Gender and energy balance: sex differences in adaptations for feast and famine.Physiol. Behav. 1982; 28: 545-563Crossref PubMed Scopus (88) Google Scholar) could explain why cultured neurons isolated from females accumulate more LDs than neurons from males (Du et al., 2009Du L. Hickey R.W. Bayir H. Watkins S.C. Tyurin V.A. Guo F. Kochanek P.M. Jenkins L.W. Ren J. Gibson G. et al.Starving neurons show sex difference in autophagy.J. Biol. Chem. 2009; 284: 2383-2396Crossref PubMed Scopus (159) Google Scholar). Neuronal LDs may also be rare or transient, making their identification particularly challenging. In the adult mouse brain, LDs are rarely found, but they accumulate prominently inside neurons when their turnover is impaired by mutations in the TAG hydrolase DDHD2 (Inloes et al., 2014Inloes J.M. Hsu K.L. Dix M.M. Viader A. Masuda K. Takei T. Wood M.R. Cravatt B.F. The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase.Proc. Natl. Acad. Sci. USA. 2014; 111: 14924-14929Crossref PubMed Scopus (96) Google Scholar). DDHD2 mouse knockouts exhibit motor and cognitive dysfunctions with extensive neurodegeneration, and in humans, DDHD2 mutations cause a MND known as HSP54 (Inloes et al., 2014Inloes J.M. Hsu K.L. Dix M.M. Viader A. Masuda K. Takei T. Wood M.R. Cravatt B.F. The hereditary spastic paraplegia-related enzyme DDHD2 is a principal brain triglyceride lipase.Proc. Natl. Acad. Sci. USA. 2014; 111: 14924-14929Crossref PubMed Scopus (96) Google Scholar). DDHD2-depleted neurons exhibit swelling of axons and dendrites, and Drosophila neuromuscular junctions lacking DDHD2 display fewer active zones, the sites of neurotransmitter release (Schuurs-Hoeijmakers et al., 2012Schuurs-Hoeijmakers J.H. Geraghty M.T. Kamsteeg E.J. Ben-Salem S. de Bot S.T. Nijhof B. van de Vondervoort I.I. van der Graaf M. Nobau A.C. Otte-Höller I. et al.FORGE Canada ConsortiumMutations in DDHD2, encoding an intracellular phospholipase A(1), cause a recessive form of complex hereditary spastic paraplegia.Am. J. Hum. Genet. 2012; 91: 1073-1081Abstract Full Text Full Text PDF PubMed Scopus (124) Google Scholar). We therefore speculate that excessive LDs may sequester and disrupt the trafficking of proteins and lipids required for synapse assembly. Indeed, LDs from mutant brains are associated with several proteins implicated in neuronal function (Figure 2) (Inloes et al., 2018Inloes J.M. Kiosses W.B. Wang H. Walther T.C. Farese Jr., R.V. Cravatt B.F. Functional contribution of the spastic paraplegia-related triglyceride hydrolase DDHD2 to the formation and content of lipid droplets.Biochemistry. 2018; 57: 827-838Crossref PubMed Scopus (27) Google Scholar). Conversely, LDs in glia are larger and more easily detected than in neurons. Heterogeneity in LD content across a cell population was proposed to promote metabolic specialization. In the liver, some cells accumulate more LDs than their neighbors and, when needed, efficiently deliver FAs to surrounding cells (Herms et al., 2013Herms A. Bosch M. Ariotti N. Reddy B.J. Fajardo A. Fernández-Vidal A. Alvarez-Guaita A. Fernández-Rojo M.A. Rentero C. Tebar F. et al.Cell-to-cell heterogeneity in lipid droplets suggests a mechanism to reduce lipotoxicity.Curr. Biol. 2013; 23: 1489-1496Abstract Full Text Full Text PDF PubMed Scopus (118) Google Scholar). This heterogeneity may represent a strategy to alleviate the overall risk of lipotoxicity, because cells with high LD content and higher levels of reactive oxygen species (ROS) express specialized defense mechanisms against oxidative damage. Might a similar division of labor also exist within the brain, with glia as the high-lipid content cells? Intriguingly, astrocytes contain higher levels of anti-oxidant molecules and ROS-detoxifying enzymes than neurons (Bélanger et al., 2011Bélanger M. Allaman I. Magistretti P.J. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation.Cell Metab. 2011; 14: 724-738Abstract Full Text Full Text PDF PubMed Scopus (1338) Google Scholar). There is direct evidence that LDs in glia protect neighboring neurons from oxidative stress (Figure 1B). In Drosophila adults and in mice, mitochondrial dysfunction promotes—via ROS accumulation—increased synthesis of lipids, which are then transferred from neurons to glia and stored in LDs (Liu et al., 2015Liu L. Zhang K. Sandoval H. Yamamoto S. Jaiswal M. Sanz E. Li Z. Hui J. Graham B.H. Quintana A. Bellen H.J. Glial lipid droplets and ROS induced by mitochondrial defects promote neurodegeneration.Cell. 2015; 160: 177-190Abstract Full Text Full Text PDF PubMed Scopus (425) Google Scholar, Liu et al., 2017Liu L. MacKenzie K.R. Putluri N. Maletić-Savatić M. Bellen H.J. The glia-neuron lactate shuttle and elevated ROS promote lipid synthesis in neurons and lipid droplet accumulation in glia via APOE/D.Cell Metab. 2017; 26: 719-737.e6Abstract Full Text Full Text PDF PubMed Scopus (210) Google Scholar). In Drosophila larvae, increased glial LD content due to ROS accumulation (e.g., under hypoxia conditions) is protective, because if glia are unable to make LDs, neurons exhibit increased damage from peroxidation (Bailey et al., 2015Bailey A.P. Koster G. Guillermier C. Hirst E.M. MacRae J.I. Lechene C.P. Postle A.D. Gould A.P. Antioxidant role for lipid droplets in a stem cell niche of drosophila.Cell. 2015; 163: 340-353Abstract Full Text Full Text PDF PubMed Scopus (300) Google Scholar). It was proposed that glial LDs sequester lipids away from the plasma membrane, especially lipids containing polyunsaturated FAs (PUFAs), which are particularly vulnerable to peroxidation by ROS. PUFAs are more protected when incorporated into TAGs within LDs than when they are in phospholipids of cell membranes. During ROS-induced apoptosis, PUFAs of membrane phospholipids are peroxidated, whereas their incorporation into LDs is thought to decrease their toxicity, suggesting that protection from oxidative stress is a general role of LDs (Li et al., 2018Li N. Sancak Y. Frasor J. Atilla-Gokcumen G.E. A protective role for triacylglycerols during apoptosis.Biochemistry. 2018; 57: 72-80Crossref PubMed Scopus (29) Google Scholar). This protective role could be relevant for ALS because oxidative stress due to mitochondrial dysfunction is a leading cause of MN injury in ALS (Barber and Shaw, 2010Barber S.C. Shaw P.J. Oxidative stress in ALS: key role in motor neuron injury and therapeutic target.Free Radic. Biol. Med. 2010; 48: 629-641Crossref PubMed Scopus (433) Google Scholar). Consistently, markers of lipid peroxidation are found in the cerebrospinal fluid of ALS patients and in disease models, suggesting that accumulation of these toxic molecules might contribute to ALS (Simpson et al., 2004Simpson E.P. Henry Y.K. Henkel J.S. Smith R.G. Appel S.H. Increased lipid peroxidation in sera of ALS patients: a potential biomarker of disease burden.Neurology. 2004; 62: 1758-1765Crossref PubMed Scopus (249) Google Scholar, Smith et al., 1998Smith R.G. Henry Y.K. Mattson M.P. Appel S.H. Presence of 4-hydroxynonenal in cerebrospinal fluid of patients with sporadic amyotrophic lateral sclerosis.Ann. Neurol. 1998; 44: 696-699Crossref PubMed Scopus (199) Google Scholar). Protein turnover is critical for ALS, because a number of ALS-linked mutations affect genes directly involved in protein clearance and homeostasis (Taylor et al., 2016Taylor J.P. Brown Jr., R.H. Cleveland D.W. Decoding ALS: from genes to mechanism.Nature. 2016; 539: 197-206Crossref PubMed Scopus (1093) Google Scholar). Emerging evidence also suggests that LDs play a fundamental role in protein aggregation and clearance. Below, we discuss whether
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
幽默雅香完成签到 ,获得积分10
1秒前
xxf1002完成签到 ,获得积分10
28秒前
牛牛完成签到 ,获得积分10
34秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
未完成完成签到,获得积分10
41秒前
汉堡包应助feiying采纳,获得10
47秒前
59秒前
ldy539发布了新的文献求助30
1分钟前
merry991024发布了新的文献求助10
1分钟前
1分钟前
三点水发布了新的文献求助10
1分钟前
Owen应助ldy539采纳,获得10
1分钟前
斯文败类应助三点水采纳,获得10
1分钟前
2分钟前
feiying发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
SH123完成签到 ,获得积分10
2分钟前
科研通AI2S应助feiying采纳,获得10
2分钟前
feiying完成签到,获得积分10
3分钟前
大模型应助拜无忧采纳,获得10
3分钟前
3分钟前
拜无忧发布了新的文献求助10
3分钟前
烟花应助拜无忧采纳,获得10
3分钟前
戚雅柔完成签到 ,获得积分10
3分钟前
一蓑烟雨任平生完成签到,获得积分0
3分钟前
poki完成签到 ,获得积分10
4分钟前
研友_nxw2xL完成签到,获得积分10
4分钟前
muriel完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
woxinyouyou完成签到,获得积分0
4分钟前
4分钟前
顺利的绿柏完成签到,获得积分10
5分钟前
Cruffin完成签到 ,获得积分10
6分钟前
6分钟前
33应助科研通管家采纳,获得10
6分钟前
丘比特应助顺顺采纳,获得10
6分钟前
theo完成签到 ,获得积分10
6分钟前
张张张完成签到 ,获得积分10
7分钟前
yujie完成签到 ,获得积分10
7分钟前
文艺不二发布了新的文献求助50
7分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422912
求助须知:如何正确求助?哪些是违规求助? 3023287
关于积分的说明 8904007
捐赠科研通 2710724
什么是DOI,文献DOI怎么找? 1486669
科研通“疑难数据库(出版商)”最低求助积分说明 687140
邀请新用户注册赠送积分活动 682341