Detection of sunn pest-damaged wheat samples using visible/near-infrared spectroscopy based on pattern recognition

有害生物分析 光谱学 红外光谱学 农学 材料科学 化学 生物 植物 物理 天文 有机化学
作者
Zahra Basati,Bahareh Jamshidi,Mansour Rasekh,Yousef Abbaspour‐Gilandeh
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:203: 308-314 被引量:55
标识
DOI:10.1016/j.saa.2018.05.123
摘要

The presence of sunn pest-damaged grains in wheat mass reduces the quality of flour and bread produced from it. Therefore, it is essential to assess the quality of the samples in collecting and storage centers of wheat and flour mills. In this research, the capability of visible/near-infrared (Vis/NIR) spectroscopy combined with pattern recognition methods was investigated for discrimination of wheat samples with different percentages of sunn pest-damaged. To this end, various samples belonging to five classes (healthy and 5%, 10%, 15% and 20% unhealthy) were analyzed using Vis/NIR spectroscopy (wavelength range of 350-1000 nm) based on both supervised and unsupervised pattern recognition methods. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) as the unsupervised techniques and soft independent modeling of class analogies (SIMCA) and partial least squares-discriminant analysis (PLS-DA) as supervised methods were used. The results showed that Vis/NIR spectra of healthy samples were correctly clustered using both PCA and HCA. Due to the high overlapping between the four unhealthy classes (5%, 10%, 15% and 20%), it was not possible to discriminate all the unhealthy samples in individual classes. However, when considering only the two main categories of healthy and unhealthy, an acceptable degree of separation between the classes can be obtained after classification with supervised pattern recognition methods of SIMCA and PLS-DA. SIMCA based on PCA modeling correctly classified samples in two classes of healthy and unhealthy with classification accuracy of 100%. Moreover, the power of the wavelengths of 839 nm, 918 nm and 995 nm were more than other wavelengths to discriminate two classes of healthy and unhealthy. It was also concluded that PLS-DA provides excellent classification results of healthy and unhealthy samples (R2 = 0.973 and RMSECV = 0.057). Therefore, Vis/NIR spectroscopy based on pattern recognition techniques can be useful for rapid distinguishing the healthy wheat samples from those damaged by sunn pest in the maintenance and processing centers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助早睡早起采纳,获得10
刚刚
刚刚
刚刚
红豆高发布了新的文献求助10
刚刚
xiao完成签到,获得积分10
1秒前
Ferdinand_Foch完成签到,获得积分10
1秒前
郝完美完成签到 ,获得积分10
1秒前
2秒前
安珊发布了新的文献求助20
2秒前
垃圾二硫自组装纳米粒完成签到,获得积分10
2秒前
qsh完成签到,获得积分10
2秒前
2秒前
3秒前
天天快乐应助caiwenwen采纳,获得10
3秒前
轻松狗发布了新的文献求助10
3秒前
3秒前
tt完成签到,获得积分10
3秒前
3秒前
roclie发布了新的文献求助10
3秒前
乐乐发布了新的文献求助10
3秒前
Zachary发布了新的文献求助10
3秒前
4秒前
QG发布了新的文献求助10
4秒前
从容的鱼完成签到,获得积分10
4秒前
bkagyin应助wcy采纳,获得10
4秒前
赘婿应助奋斗映寒采纳,获得10
5秒前
阮语芙完成签到,获得积分10
5秒前
zbj662完成签到 ,获得积分10
5秒前
田様应助薄荷采纳,获得10
5秒前
5秒前
6秒前
6秒前
轨迹应助火星上香菇采纳,获得30
6秒前
zgrmws应助xzn1123采纳,获得10
6秒前
7秒前
kangkang发布了新的文献求助10
7秒前
sunyanghu369发布了新的文献求助10
7秒前
xiaoze完成签到 ,获得积分10
8秒前
慕青应助丁仪采纳,获得10
8秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665717
求助须知:如何正确求助?哪些是违规求助? 4877979
关于积分的说明 15115220
捐赠科研通 4824955
什么是DOI,文献DOI怎么找? 2582994
邀请新用户注册赠送积分活动 1537014
关于科研通互助平台的介绍 1495441