Detection of sunn pest-damaged wheat samples using visible/near-infrared spectroscopy based on pattern recognition

有害生物分析 光谱学 红外光谱学 农学 材料科学 化学 生物 植物 物理 天文 有机化学
作者
Zahra Basati,Bahareh Jamshidi,Mansour Rasekh,Yousef Abbaspour‐Gilandeh
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier]
卷期号:203: 308-314 被引量:55
标识
DOI:10.1016/j.saa.2018.05.123
摘要

The presence of sunn pest-damaged grains in wheat mass reduces the quality of flour and bread produced from it. Therefore, it is essential to assess the quality of the samples in collecting and storage centers of wheat and flour mills. In this research, the capability of visible/near-infrared (Vis/NIR) spectroscopy combined with pattern recognition methods was investigated for discrimination of wheat samples with different percentages of sunn pest-damaged. To this end, various samples belonging to five classes (healthy and 5%, 10%, 15% and 20% unhealthy) were analyzed using Vis/NIR spectroscopy (wavelength range of 350-1000 nm) based on both supervised and unsupervised pattern recognition methods. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) as the unsupervised techniques and soft independent modeling of class analogies (SIMCA) and partial least squares-discriminant analysis (PLS-DA) as supervised methods were used. The results showed that Vis/NIR spectra of healthy samples were correctly clustered using both PCA and HCA. Due to the high overlapping between the four unhealthy classes (5%, 10%, 15% and 20%), it was not possible to discriminate all the unhealthy samples in individual classes. However, when considering only the two main categories of healthy and unhealthy, an acceptable degree of separation between the classes can be obtained after classification with supervised pattern recognition methods of SIMCA and PLS-DA. SIMCA based on PCA modeling correctly classified samples in two classes of healthy and unhealthy with classification accuracy of 100%. Moreover, the power of the wavelengths of 839 nm, 918 nm and 995 nm were more than other wavelengths to discriminate two classes of healthy and unhealthy. It was also concluded that PLS-DA provides excellent classification results of healthy and unhealthy samples (R2 = 0.973 and RMSECV = 0.057). Therefore, Vis/NIR spectroscopy based on pattern recognition techniques can be useful for rapid distinguishing the healthy wheat samples from those damaged by sunn pest in the maintenance and processing centers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小林太郎应助斯奈克采纳,获得20
刚刚
刚刚
情怀应助执笔曦倾年采纳,获得10
刚刚
刚刚
刚刚
刚刚
科研民工完成签到,获得积分10
1秒前
FR完成签到,获得积分10
1秒前
2秒前
小马甲应助浩浩大人采纳,获得10
2秒前
2秒前
小小杜发布了新的文献求助20
2秒前
打打应助袁国惠采纳,获得10
2秒前
2秒前
哈哈哈完成签到,获得积分10
3秒前
小张发布了新的文献求助10
3秒前
温柔若完成签到,获得积分10
3秒前
称心的问薇完成签到,获得积分10
4秒前
4秒前
高兴的半凡完成签到 ,获得积分10
5秒前
123完成签到,获得积分10
5秒前
Answer完成签到,获得积分10
5秒前
诚心凝旋发布了新的文献求助10
5秒前
孟柠柠完成签到,获得积分10
6秒前
6秒前
哈哈哈发布了新的文献求助10
6秒前
SYLH应助di采纳,获得10
7秒前
韭菜盒子完成签到,获得积分20
7秒前
7秒前
8秒前
饭小心发布了新的文献求助10
8秒前
tanjianxin完成签到,获得积分10
8秒前
wanci应助帅玉玉采纳,获得10
8秒前
Ellie完成签到 ,获得积分10
8秒前
晴天完成签到 ,获得积分10
9秒前
123完成签到,获得积分10
9秒前
9秒前
EOFG0PW发布了新的文献求助10
10秒前
buno应助yug采纳,获得10
10秒前
hgh完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740