Detection of sunn pest-damaged wheat samples using visible/near-infrared spectroscopy based on pattern recognition

有害生物分析 光谱学 红外光谱学 农学 材料科学 化学 生物 植物 物理 天文 有机化学
作者
Zahra Basati,Bahareh Jamshidi,Mansour Rasekh,Yousef Abbaspour‐Gilandeh
出处
期刊:Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy [Elsevier BV]
卷期号:203: 308-314 被引量:55
标识
DOI:10.1016/j.saa.2018.05.123
摘要

The presence of sunn pest-damaged grains in wheat mass reduces the quality of flour and bread produced from it. Therefore, it is essential to assess the quality of the samples in collecting and storage centers of wheat and flour mills. In this research, the capability of visible/near-infrared (Vis/NIR) spectroscopy combined with pattern recognition methods was investigated for discrimination of wheat samples with different percentages of sunn pest-damaged. To this end, various samples belonging to five classes (healthy and 5%, 10%, 15% and 20% unhealthy) were analyzed using Vis/NIR spectroscopy (wavelength range of 350-1000 nm) based on both supervised and unsupervised pattern recognition methods. Principal component analysis (PCA) and hierarchical cluster analysis (HCA) as the unsupervised techniques and soft independent modeling of class analogies (SIMCA) and partial least squares-discriminant analysis (PLS-DA) as supervised methods were used. The results showed that Vis/NIR spectra of healthy samples were correctly clustered using both PCA and HCA. Due to the high overlapping between the four unhealthy classes (5%, 10%, 15% and 20%), it was not possible to discriminate all the unhealthy samples in individual classes. However, when considering only the two main categories of healthy and unhealthy, an acceptable degree of separation between the classes can be obtained after classification with supervised pattern recognition methods of SIMCA and PLS-DA. SIMCA based on PCA modeling correctly classified samples in two classes of healthy and unhealthy with classification accuracy of 100%. Moreover, the power of the wavelengths of 839 nm, 918 nm and 995 nm were more than other wavelengths to discriminate two classes of healthy and unhealthy. It was also concluded that PLS-DA provides excellent classification results of healthy and unhealthy samples (R2 = 0.973 and RMSECV = 0.057). Therefore, Vis/NIR spectroscopy based on pattern recognition techniques can be useful for rapid distinguishing the healthy wheat samples from those damaged by sunn pest in the maintenance and processing centers.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
稳重十三完成签到,获得积分10
刚刚
xxxx完成签到,获得积分10
刚刚
1秒前
风中的寄风完成签到,获得积分10
1秒前
1秒前
开心的眼睛完成签到,获得积分10
2秒前
lucy发布了新的文献求助20
2秒前
2秒前
SciGPT应助科研通管家采纳,获得10
3秒前
ll应助科研通管家采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
打打应助科研通管家采纳,获得10
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
ll应助科研通管家采纳,获得10
3秒前
苏卿应助科研通管家采纳,获得30
3秒前
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
ll应助科研通管家采纳,获得20
4秒前
4秒前
穆佳琴发布了新的文献求助10
4秒前
是十七完成签到,获得积分10
6秒前
无花果应助Mr.Su采纳,获得10
6秒前
英姑应助王相博采纳,获得10
6秒前
拾一完成签到,获得积分10
6秒前
hhh发布了新的文献求助10
6秒前
希望天下0贩的0应助lee采纳,获得30
6秒前
情怀应助emm采纳,获得10
6秒前
花开富贵发布了新的文献求助10
7秒前
zake发布了新的文献求助10
7秒前
EaSy完成签到,获得积分10
8秒前
8秒前
8秒前
moonbeam发布了新的文献求助10
9秒前
罐罐完成签到,获得积分10
9秒前
wangwangyh发布了新的文献求助10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970240
求助须知:如何正确求助?哪些是违规求助? 3514997
关于积分的说明 11176725
捐赠科研通 3250268
什么是DOI,文献DOI怎么找? 1795244
邀请新用户注册赠送积分活动 875725
科研通“疑难数据库(出版商)”最低求助积分说明 805004