Enhanced Sparse Period-Group Lasso for Bearing Fault Diagnosis

方位(导航) 断层(地质) 计算机科学 稀疏逼近 噪音(视频) 算法 集合(抽象数据类型) Lasso(编程语言) 代表(政治) 模式识别(心理学) 人工智能 万维网 法学 程序设计语言 地震学 地质学 图像(数学) 政治 政治学
作者
Zhibin Zhao,Shuming Wu,Baijie Qiao,Shibin Wang,Xuefeng Chen
出处
期刊:IEEE Transactions on Industrial Electronics [Institute of Electrical and Electronics Engineers]
卷期号:66 (3): 2143-2153 被引量:179
标识
DOI:10.1109/tie.2018.2838070
摘要

Bearing faults are one of the most common inducements for machine failures. Therefore, it is very important to perform bearing fault diagnosis reliably and rapidly. However, it is fundamental but difficult to extract impulses buried in heavy background noise for bearing fault diagnosis. In this paper, a novel adaptive enhanced sparse period-group lasso (AdaESPGL) algorithm for bearing fault diagnosis is proposed. The algorithm is based on the proposed enhanced sparse group lasso penalty, which promotes the sparsity within and across groups of the impulsive feature of bearing faults. Moreover, a periodic prior is embedded and updated dynamically through each iteration of the optimization procedure. Additionally, we formed a deterministic rule about how to set the parameters adaptively. The main advantage over conventional sparse representation methods is that AdaESPGL is parameter free (forming a deterministic rule) and rapid (extracting the impulsive information directly from the time domain). Finally, the performance of AdaESPGL is verified through a series of numerical simulations and the diagnosis of a motor bearing. Results demonstrate its superiority in extracting periodic impulses in comparison to other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
巨噬细胞A完成签到,获得积分10
刚刚
刚刚
我要读博士完成签到 ,获得积分10
刚刚
xxq完成签到,获得积分20
刚刚
福气小姐完成签到 ,获得积分10
刚刚
搜集达人应助jjy采纳,获得10
1秒前
1秒前
郑总完成签到,获得积分10
1秒前
CipherSage应助马尼拉采纳,获得10
1秒前
SCI完成签到 ,获得积分10
2秒前
3秒前
healer发布了新的文献求助10
3秒前
123完成签到,获得积分20
4秒前
李健的小迷弟应助yili采纳,获得10
4秒前
L.完成签到,获得积分10
4秒前
木子发布了新的文献求助10
4秒前
威武诺言发布了新的文献求助10
4秒前
科研通AI5应助孙二二采纳,获得10
4秒前
4秒前
英姑应助rookie_b0采纳,获得10
5秒前
毛慢慢发布了新的文献求助10
5秒前
123完成签到,获得积分10
5秒前
kangkang完成签到,获得积分10
6秒前
丘比特应助东风第一枝采纳,获得10
6秒前
6秒前
丰知然应助normankasimodo采纳,获得10
7秒前
黑森林发布了新的文献求助30
7秒前
hu970发布了新的文献求助10
7秒前
7秒前
俭朴夜雪发布了新的文献求助30
7秒前
林上草应助lzj001983采纳,获得10
7秒前
小白完成签到,获得积分20
7秒前
药疯了完成签到,获得积分20
8秒前
桐桐应助123采纳,获得10
8秒前
风中寄云发布了新的文献求助10
8秒前
buuyoo发布了新的文献求助10
8秒前
zjudxn发布了新的文献求助10
8秒前
春夏爱科研完成签到,获得积分10
9秒前
飞翔的西红柿完成签到,获得积分10
9秒前
xzy完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759