统计物理学
离子键合
计算
协方差
稳健性(进化)
物理
计算机科学
数学
算法
离子
量子力学
化学
生物化学
基因
统计
作者
Nicola Molinari,Yu Xie,Ian Leifer,Aris Marcolongo,Mordechai Kornbluth,Boris Kozinsky
标识
DOI:10.1103/physrevlett.127.025901
摘要
Computation of correlated ionic transport properties from molecular dynamics in the Green-Kubo formalism is expensive, as one cannot rely on the affordable mean square displacement approach. We use spectral decomposition of the short-time ionic displacement covariance to learn a set of diffusion eigenmodes that encode the correlation structure and form a basis for analyzing the ionic trajectories. This allows systematic reduction of the uncertainty and accelerate computations of ionic conductivity in systems with a steady-state correlation structure. We provide mathematical and numerical proofs of the method's robustness and demonstrate it on realistic electrolyte materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI