Role-Oriented Graph Auto-encoder Guided by Structural Information

计算机科学 杠杆(统计) 图形 理论计算机科学 人工智能 编码器 人工神经网络 机器学习 操作系统
作者
Xuan Guo,Wang Zhang,Wenjun Wang,Yang Yu,Yinghui Wang,Pengfei Jiao
出处
期刊:Lecture Notes in Computer Science 卷期号:: 466-481 被引量:10
标识
DOI:10.1007/978-3-030-59416-9_28
摘要

Roles in a complex network usually represent the local connectivity patterns of nodes, which reflect the functions or behaviors of corresponding entities. Role discovery has great meaning for understanding the formation and evolution of networks. While the importance of role discovery in networks has been realized gradually, a variety of approaches of role-oriented network representation learning are proposed. Almost all the existing approaches are dependent on manual high-order structural properties which are always fragmentary. They suffer from unstable performances and poor generalization ability, because their hand-craft structural features sometimes miss the characteristics of different networks. In addition, graph neural networks (GNNs) have great potential to automatically capture structural properties, but it is hard to be given the rein to for the difficulty of designing role-oriented unsupervised loss. To overcome these challenges, we provide an idea that leverage low-dimensional extracted structural features as guidance to train graph neural networks. Based on the idea, we proposed GAS, a novel graph auto-encoder guided by structural information, to learn role-oriented representations for nodes. Results of extensive experiments show that GAS has better performance than other state-of-the-art approaches.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
2秒前
hhh完成签到 ,获得积分10
3秒前
闪闪如松发布了新的文献求助10
4秒前
4秒前
鱼与木头发布了新的文献求助10
4秒前
努力发布了新的文献求助10
4秒前
桐桐应助言草西采纳,获得10
5秒前
领导范儿应助wuniuniu采纳,获得10
6秒前
CyndiaSUN完成签到,获得积分10
9秒前
10秒前
12秒前
12秒前
明理的若菱关注了科研通微信公众号
12秒前
13秒前
小苏苏完成签到,获得积分20
13秒前
LuoYixiang发布了新的文献求助10
14秒前
鱼与木头完成签到,获得积分10
14秒前
李健的小迷弟应助lzx采纳,获得10
16秒前
跳跃绯完成签到,获得积分10
16秒前
17秒前
19秒前
hh完成签到,获得积分10
19秒前
英俊的铭应助乂贰ZERO叁采纳,获得10
20秒前
领导范儿应助shimly0101xx采纳,获得10
20秒前
21秒前
Akim应助Airbus采纳,获得10
21秒前
李健的小迷弟应助陈曦采纳,获得10
23秒前
白小超人完成签到 ,获得积分10
23秒前
24秒前
Profeto应助哈哈你长比我丑采纳,获得10
24秒前
言草西发布了新的文献求助10
25秒前
26秒前
28秒前
29秒前
香蕉觅云应助ddddd采纳,获得10
29秒前
鬲木发布了新的文献求助10
31秒前
31秒前
31秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989660
求助须知:如何正确求助?哪些是违规求助? 3531826
关于积分的说明 11255082
捐赠科研通 3270447
什么是DOI,文献DOI怎么找? 1804981
邀请新用户注册赠送积分活动 882136
科研通“疑难数据库(出版商)”最低求助积分说明 809176