Sentiment Analysis on Chinese Weibo Regarding COVID-19

情绪分析 悲伤 惊喜 社会化媒体 厌恶 2019年冠状病毒病(COVID-19) 感恩 计算机科学 愤怒 大流行 互联网隐私 人工智能 心理学 万维网 社会心理学 医学 病理 传染病(医学专业) 疾病
作者
Xiaoting Lyu,Zhe Chen,Di Wu,Wei Wang
出处
期刊:Lecture Notes in Computer Science 卷期号:: 710-721 被引量:15
标识
DOI:10.1007/978-3-030-60450-9_56
摘要

The outbreak of COVID-19 has had a great impact on people's general lifestyle over the world. People express their views about COVID-19 on social media more frequently when cities are under lockdown. In this work, we are motivated to analyze the sentiments and their evolution of people in the face of this public health crisis based on Chinese Weibo, a largest social media platform in China. First, we obtained the top 50 hot searched hashtags from January 10, 2020 to May 31, 2020, and collected 1,681,265 Weibo posts associated to the hashtags regarding COVID-19. We then constructed a COVID-19 sentiment analysis dataset by annotating the related Weibo posts with 7 categories, e.g., fear, anger, disgust, sadness, gratitude, surprise, and optimism, in combination of the other two datasets. The well annotated data consists of 21,173 pieces of texts. Second, we employed three methods, i.e., LSTM, BERT, and ERNIE, to predict the sentiments of users on Weibo. Comprehensive experimental results show that ERNIE classifier has the highest accuracy and reaches 0.8837. We then analyzed the sentiment and its evolution of Weibo users to see how people respond to COVID-19 throughout the outbreak. Based on the in-depth analysis, we found that people generally felt negative (mainly fear) at early stage of the outbreak. As the pandemic situation gradually improved, people's positive sentiment began to increase. The number of cases of COVID-19, news and public events have a great influence on people's sentiments. Finally, we developed a real-time visualization system to display the trend of the user's sentiment and hot searched hashtags based on Weibo during the pandemic.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
朴素的蛋挞完成签到,获得积分10
刚刚
整齐百褶裙完成签到 ,获得积分10
4秒前
酶没美镁发布了新的文献求助10
5秒前
ENIX完成签到,获得积分10
5秒前
小巧的香氛完成签到 ,获得积分10
5秒前
cxqygdn完成签到,获得积分10
5秒前
5秒前
Una发布了新的文献求助10
6秒前
搞怪迎夏发布了新的文献求助10
6秒前
俊秀的思山完成签到,获得积分10
10秒前
小鲸鱼完成签到,获得积分10
10秒前
11秒前
李爱国应助Grace0610采纳,获得10
11秒前
12秒前
13秒前
lightstop发布了新的文献求助10
15秒前
搞怪迎夏应助XIXI采纳,获得10
15秒前
15秒前
完美世界应助酶没美镁采纳,获得10
16秒前
沉静的万天完成签到 ,获得积分10
22秒前
如意2023完成签到 ,获得积分10
23秒前
牛轧糖完成签到 ,获得积分10
23秒前
香蕉爆米花完成签到,获得积分10
23秒前
加油呀完成签到,获得积分10
25秒前
小祺完成签到,获得积分10
25秒前
25秒前
26秒前
水穷云起完成签到,获得积分10
27秒前
HSH完成签到,获得积分10
27秒前
27秒前
fawr完成签到 ,获得积分10
29秒前
水穷云起发布了新的文献求助10
30秒前
Lori完成签到,获得积分10
31秒前
Grace0610发布了新的文献求助10
31秒前
听风随影完成签到 ,获得积分10
31秒前
32秒前
Felix完成签到,获得积分10
33秒前
NexusExplorer应助认真的寒香采纳,获得10
34秒前
34秒前
研友_VZG7GZ应助Grace0610采纳,获得10
36秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165214
求助须知:如何正确求助?哪些是违规求助? 2816237
关于积分的说明 7911970
捐赠科研通 2475937
什么是DOI,文献DOI怎么找? 1318452
科研通“疑难数据库(出版商)”最低求助积分说明 632155
版权声明 602388