Albedo Retrieval From Sentinel-2 by New Narrow-to-Broadband Conversion Coefficients

反照率(炼金术) 遥感 环境科学 宽带 均方误差 图像分辨率 卫星 计算机科学 辐射传输 地质学 数学 电信 统计 人工智能 物理 光学 表演艺术 艺术史 天文 艺术
作者
Stefania Bonafoni,Aliihsan Şekertekin
出处
期刊:IEEE Geoscience and Remote Sensing Letters [Institute of Electrical and Electronics Engineers]
卷期号:17 (9): 1618-1622 被引量:45
标识
DOI:10.1109/lgrs.2020.2967085
摘要

Surface albedo in the rural and urban environment is one of the most influencing parameters in the evaluation of the radiative forcing of the land surface. Satellite remote sensing is an efficient tool for surface broadband albedo estimation with various spatial resolutions. Different retrieval algorithms were proposed and tested in the literature. This letter focuses on the narrow-to-broadband conversion algorithm applied to Sentinel-2 reflective data, using its best spatial resolution (10 m). New narrow-to-broadband coefficients for albedo retrieval were computed. Their accuracy was tested with ground-based measurements in two different environments and compared with another algorithm introduced in the literature. The application of these coefficients for the albedo estimation requires the assumption of Lambertian surface and clear sky conditions. The first test was performed on six field stations of the Surface Radiation Budget Network (SURFRAD), and the second test was carried out within an urban area (Perugia, Central Italy), to better evaluate the impact of the spatial resolution on the albedo estimation from spaceborne sensors. The obtained root mean square error (RMSE) for the two tests presented very good values for both algorithms (around 0.02), with a slightly better performance of the proposed coefficients, especially for the higher albedo values. In the urban test, the retrieved albedo from Sentinel-2 with a 10-m pixel size provided considerably better results than the Landsat 8 estimation (30-m), highlighting the benefit of using a finer resolution in heterogeneous environments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
烟花应助老阳采纳,获得10
2秒前
欧阳静芙完成签到 ,获得积分10
2秒前
3秒前
wangwansan完成签到 ,获得积分10
3秒前
香蕉觅云应助nhocbinzuzu采纳,获得10
4秒前
科研通AI5应助舒服的秋荷采纳,获得10
4秒前
沐染发布了新的文献求助10
5秒前
赵亮发布了新的文献求助10
7秒前
9秒前
丘比特应助悦耳黑猫采纳,获得10
11秒前
12秒前
13秒前
Jasper应助靓丽紫真采纳,获得10
13秒前
老阳发布了新的文献求助10
14秒前
15秒前
15秒前
活泼的破茧完成签到,获得积分20
16秒前
19秒前
小常发布了新的文献求助30
19秒前
20秒前
踏雪飞鸿发布了新的文献求助10
23秒前
Jenny发布了新的文献求助10
26秒前
濮阳灵竹发布了新的文献求助50
26秒前
可爱大悦城完成签到,获得积分10
27秒前
28秒前
refeng完成签到 ,获得积分10
34秒前
领导范儿应助YLJ采纳,获得10
34秒前
科目三应助老阳采纳,获得10
35秒前
默默地读文献应助因乎采纳,获得30
36秒前
38秒前
含糊的泥猴桃完成签到 ,获得积分10
39秒前
Waris完成签到 ,获得积分10
40秒前
41秒前
脑洞疼应助YueZhu采纳,获得10
42秒前
42秒前
虚心焦完成签到 ,获得积分10
44秒前
我是老大应助科研通管家采纳,获得10
45秒前
情怀应助科研通管家采纳,获得10
45秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3738641
求助须知:如何正确求助?哪些是违规求助? 3281995
关于积分的说明 10027164
捐赠科研通 2998750
什么是DOI,文献DOI怎么找? 1645450
邀请新用户注册赠送积分活动 782802
科研通“疑难数据库(出版商)”最低求助积分说明 749972