Vertically Stacked Gate-All-Around Structured Tunneling-Based Ternary-CMOS

材料科学 光电子学 CMOS芯片 量子隧道 阈值电压 晶体管 电气工程 金属浇口 逻辑门 栅氧化层 电压 工程类
作者
Sihyun Kim,Kitae Lee,Jong‐Ho Lee,Daewoong Kwon,Byung‐Gook Park
出处
期刊:IEEE Transactions on Electron Devices [Institute of Electrical and Electronics Engineers]
卷期号:67 (9): 3889-3893 被引量:18
标识
DOI:10.1109/ted.2020.3011384
摘要

This article proposes a novel structure for tunneling-based ternary-complementary metal-oxide-semi conductor (T-CMOS) to break through the power scaling constraints of conventional binary-CMOS. The previous T-CMOS uses off-leakage band-to-band tunneling (BTBT) currents generated at the deep drain-to-substrate junction for the third voltage state, which allows ternary inverter configuration with only two single transistors. However, the high-dose ion implantation for the BTBT layer must affect the channel doping concentration, leading to the threshold voltage fluctuation. To avoid the interference of the BTBT layer dopants to the channel as well as to maximize the electrostatic gate controllability, vertically stacked gate-all-around (GAA) field-effect transistor (GAAFET)-type T-CMOS device is proposed. By simply changing the ground plane (GP) doping concentration in existing GAAFET fabrication, the BTBT layer can be formed completely apart from the suspended channel layers. The changes of the transfer characteristics and the transient output voltage characteristics depending on the key parameters such as the GP doping concentration and the gate work function are thoroughly analyzed for the proposed GAA T-CMOS through mixed-mode TCAD device and circuit simulations. It is concluded that the two key parameters should be optimized, otherwise the margin for the third voltage state and the switching speed is seriously degraded.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
franklvlei发布了新的文献求助10
1秒前
丘比特应助湘华采纳,获得10
2秒前
2秒前
AIA7完成签到,获得积分10
2秒前
towerman完成签到,获得积分10
3秒前
花花花花发布了新的文献求助10
4秒前
4秒前
xiaoziyi666发布了新的文献求助10
4秒前
muomuo完成签到,获得积分10
4秒前
4秒前
eli完成签到,获得积分10
5秒前
ZL发布了新的文献求助10
5秒前
Jason完成签到,获得积分10
5秒前
6秒前
6秒前
朴实的乐天完成签到,获得积分10
6秒前
7秒前
towerman发布了新的文献求助10
7秒前
科研通AI5应助愤怒的寄琴采纳,获得10
7秒前
搜集达人应助起司嗯采纳,获得30
7秒前
jjgod完成签到,获得积分10
8秒前
kilig完成签到 ,获得积分10
8秒前
8秒前
good发布了新的文献求助10
8秒前
可靠从云发布了新的文献求助30
8秒前
安静的从安完成签到,获得积分10
9秒前
了了完成签到,获得积分10
9秒前
烟花应助phylicia采纳,获得10
10秒前
讲你ing发布了新的文献求助10
10秒前
11秒前
小西发布了新的文献求助30
11秒前
行不通完成签到,获得积分10
11秒前
小赟发布了新的文献求助20
12秒前
Ava应助爱学习采纳,获得10
12秒前
12秒前
wary发布了新的文献求助10
12秒前
橘子完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762