亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unraveling the comorbidity of depression and anxiety in a large inpatient sample: Network analysis to examine bridge symptoms

共病 焦虑 萧条(经济学) 心理学 精神科 心情 临床心理学 担心 宏观经济学 经济
作者
Tim Kaiser,Philipp Herzog,Ulrich Voderholzer,Eva‐Lotta Brakemeier
出处
期刊:Depression and Anxiety [Wiley]
卷期号:38 (3): 307-317 被引量:162
标识
DOI:10.1002/da.23136
摘要

Comorbidities in mental disorders are often understood by assuming a common cause. The network theory of mental disorders offers an alternative to this assumption by understanding comorbidities as mutually reinforced problems. In this study, we used network analysis to examine bridge symptoms between anxiety and depression in a large sample.Using data from a sample of patients diagnosed with both depression and an anxiety disorder before and after inpatient treatment (N = 5,614, mean age: 42.24, 63.59% female, average treatment duration: 48.12 days), network models of depression and anxiety symptoms are estimated. Topology, the centrality of nodes, stability, and changes in network structure are analyzed. Symptoms that drive comorbidity are determined by bridge node analysis. As an alternative to network communities based on categorical diagnosis, we performed a community analysis and propose empirically derived symptom subsets.The obtained network models are highly stable. Sad mood and the inability to control worry are the most central. Psychomotor agitation or retardation is the strongest bridge node between anxiety and depression, followed by concentration problems and restlessness. Changes in appetite and suicidality were unique to depression. Community analysis revealed four symptom groups.The estimated network structure of depression and anxiety symptoms proves to be highly accurate. Results indicate that some symptoms are considerably more influential than others and that only a small number of predominantly physical symptoms are strong candidates for explaining comorbidity. Future studies should include physiological measures in network models to provide a more accurate understanding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
27秒前
笠昂发布了新的文献求助10
29秒前
宋忘幽发布了新的文献求助10
31秒前
yotta应助笠昂采纳,获得10
33秒前
小二郎应助笠昂采纳,获得10
39秒前
1分钟前
潇湘完成签到 ,获得积分10
2分钟前
HuiHui完成签到,获得积分10
2分钟前
nalan发布了新的文献求助30
2分钟前
2分钟前
宋忘幽发布了新的文献求助10
3分钟前
可爱的函函应助缘字诀采纳,获得10
3分钟前
3分钟前
啊哈发布了新的文献求助10
3分钟前
3分钟前
shain完成签到,获得积分10
3分钟前
4分钟前
星辰大海应助科研通管家采纳,获得10
4分钟前
今后应助啊哈采纳,获得10
4分钟前
mumu完成签到 ,获得积分10
4分钟前
机智若云完成签到,获得积分10
4分钟前
宋忘幽发布了新的文献求助10
4分钟前
星辰大海应助皮皮团采纳,获得10
4分钟前
4分钟前
iwaking发布了新的文献求助10
4分钟前
七宝完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
七宝关注了科研通微信公众号
5分钟前
5分钟前
5分钟前
曾瀚宇完成签到,获得积分10
5分钟前
ykswz99发布了新的文献求助30
5分钟前
5分钟前
5分钟前
李健应助含糊的万宝路采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
大模型应助科研通管家采纳,获得10
6分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422860
求助须知:如何正确求助?哪些是违规求助? 3023243
关于积分的说明 8903870
捐赠科研通 2710629
什么是DOI,文献DOI怎么找? 1486626
科研通“疑难数据库(出版商)”最低求助积分说明 687127
邀请新用户注册赠送积分活动 682330