A combined radiomics and clinical variables model for prediction of malignancy in T2 hyperintense uterine mesenchymal tumors on MRI

医学 神经组阅片室 接收机工作特性 恶性肿瘤 无线电技术 放射科 磁共振成像 回顾性队列研究 病理 机器学习 内科学 计算机科学 神经学 精神科
作者
Tingting Wang,Jing Gong,Qiao Li,Caiting Chu,Wenbin Shen,Weijun Peng,Yajia Gu,Wenhua Li
出处
期刊:European Radiology [Springer Nature]
卷期号:31 (8): 6125-6135 被引量:19
标识
DOI:10.1007/s00330-020-07678-9
摘要

This study aims to develop a machine learning model for prediction of malignancy in T2 hyperintense mesenchymal uterine tumors based on T2-weighted image (T2WI) features and clinical information. This retrospective study included 134 patients with T2 hyperintense uterine mesenchymal tumors (104 patients in training cohort and 30 in testing cohort). A total of 960 radiomics features were initially computed and extracted from each 3D segmented tumor depicting on T2WI. The support vector machine (SVM) classifier was applied to build computer-aided diagnosis (CAD) models by using selected clinical and radiomics features, respectively. Finally, an observer study was conducted by comparing with two radiologists to evaluate the diagnostic performance. The area under the receiver operating characteristic (ROC) curve (AUC) was computed to assess the performance of each model. Comparing with the T2WI-based radiomics model (AUC: 0.76 ± 0.09) and the clinical model (AUC: 0.79 ± 0.09), the combined model significantly improved the AUC value to 0.91 ± 0.05 (p < 0.05). The clinical-radiomics combined model yielded equivalent or higher performance than two radiologists (AUC: 0.78 vs. 0.91, p = 0.03; 0.90 vs.0.91, p = 0.13). There was a significant difference between the AUC values of two radiologists (p < 0.05). It is feasible to predict malignancy risk of T2 hyperintense uterine mesenchymal tumors by combining clinical variables and T2WI-based radiomics features. Machine learning–based classification model may be useful to assist radiologists in decision-making. • Radiomics approach has the potential to distinguish between benign and malignant mesenchymal uterine tumors. • T2WI-based radiomics analysis combined with clinical variables performed well in predicting malignancy risk of T2 hyperintense uterine mesenchymal tumors. • Machine learning–based classification model may be useful to assist radiologists in characterization of a T2 hyperintense uterine mesenchymal tumor.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健应助S.采纳,获得10
刚刚
心理学狗都不学完成签到,获得积分10
刚刚
2秒前
2秒前
2秒前
英姑应助overThat采纳,获得10
3秒前
星辰大海应助大翟采纳,获得10
5秒前
5秒前
6秒前
hhh发布了新的文献求助10
6秒前
小二郎应助bridge采纳,获得10
7秒前
Iris完成签到,获得积分20
7秒前
kuoping完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
LAOPIIII发布了新的文献求助10
11秒前
花生完成签到,获得积分10
12秒前
看不懂发布了新的文献求助10
12秒前
13秒前
轻云触月发布了新的文献求助10
13秒前
S.发布了新的文献求助10
13秒前
Anthonywll完成签到 ,获得积分10
13秒前
Eins发布了新的文献求助10
14秒前
ljty完成签到,获得积分10
15秒前
hhh发布了新的文献求助10
15秒前
15秒前
无花果应助树池采纳,获得10
15秒前
LAOPIIII完成签到,获得积分10
16秒前
阿菜完成签到,获得积分10
16秒前
17秒前
Ava应助ivy采纳,获得10
17秒前
18秒前
chenqi完成签到,获得积分10
18秒前
18秒前
18秒前
李爱国应助科研通管家采纳,获得10
18秒前
华仔应助科研通管家采纳,获得10
18秒前
汉堡包应助科研通管家采纳,获得10
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
高分求助中
The ACS Guide to Scholarly Communication 2500
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 810
《粉体与多孔固体材料的吸附原理、方法及应用》(需要中文翻译版,化学工业出版社,陈建,周力,王奋英等译) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3084626
求助须知:如何正确求助?哪些是违规求助? 2737675
关于积分的说明 7546358
捐赠科研通 2387296
什么是DOI,文献DOI怎么找? 1265911
科研通“疑难数据库(出版商)”最低求助积分说明 613207
版权声明 598409