Double/debiased machine learning for treatment and structural parameters

过度拟合 估计员 正规化(语言学) 干扰参数 数学 推论 算法 统计 人工智能 应用数学 计算机科学 人工神经网络
作者
Victor Chernozhukov,Denis Chetverikov,Mert Demirer,Esther Duflo,Christian Hansen,Whitney K. Newey,James M. Robins
出处
期刊:Econometrics Journal [Oxford University Press]
卷期号:21 (1): C1-C68 被引量:1043
标识
DOI:10.1111/ectj.12097
摘要

We revisit the classic semi‐parametric problem of inference on a low‐dimensional parameter θ0 in the presence of high‐dimensional nuisance parameters η0. We depart from the classical setting by allowing for η0 to be so high‐dimensional that the traditional assumptions (e.g. Donsker properties) that limit complexity of the parameter space for this object break down. To estimate η0, we consider the use of statistical or machine learning (ML) methods, which are particularly well suited to estimation in modern, very high‐dimensional cases. ML methods perform well by employing regularization to reduce variance and trading off regularization bias with overfitting in practice. However, both regularization bias and overfitting in estimating η0 cause a heavy bias in estimators of θ0 that are obtained by naively plugging ML estimators of η0 into estimating equations for θ0. This bias results in the naive estimator failing to be N−1/2 consistent, where N is the sample size. We show that the impact of regularization bias and overfitting on estimation of the parameter of interest θ0 can be removed by using two simple, yet critical, ingredients: (1) using Neyman‐orthogonal moments/scores that have reduced sensitivity with respect to nuisance parameters to estimate θ0; (2) making use of cross‐fitting, which provides an efficient form of data‐splitting. We call the resulting set of methods double or debiased ML (DML). We verify that DML delivers point estimators that concentrate in an N−1/2‐neighbourhood of the true parameter values and are approximately unbiased and normally distributed, which allows construction of valid confidence statements. The generic statistical theory of DML is elementary and simultaneously relies on only weak theoretical requirements, which will admit the use of a broad array of modern ML methods for estimating the nuisance parameters, such as random forests, lasso, ridge, deep neural nets, boosted trees, and various hybrids and ensembles of these methods. We illustrate the general theory by applying it to provide theoretical properties of the following: DML applied to learn the main regression parameter in a partially linear regression model; DML applied to learn the coefficient on an endogenous variable in a partially linear instrumental variables model; DML applied to learn the average treatment effect and the average treatment effect on the treated under unconfoundedness; DML applied to learn the local average treatment effect in an instrumental variables setting. In addition to these theoretical applications, we also illustrate the use of DML in three empirical examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助RuoYinLee采纳,获得10
刚刚
sunhealth完成签到,获得积分10
1秒前
左岸完成签到,获得积分10
1秒前
2秒前
panyuz发布了新的文献求助10
2秒前
义气绿柳发布了新的文献求助10
2秒前
我是老大应助佳佳爱学习采纳,获得10
3秒前
科研通AI2S应助ivyjianjie采纳,获得10
3秒前
高大的白莲完成签到,获得积分10
3秒前
4秒前
桐桐应助Pinocchio采纳,获得10
4秒前
5秒前
薰硝壤应助qqqqas采纳,获得10
6秒前
FashionBoy应助大方的不乐采纳,获得10
6秒前
huhulahu发布了新的文献求助10
6秒前
完美世界应助yangts2021采纳,获得10
6秒前
6秒前
7秒前
哈呜哈巫发布了新的文献求助10
8秒前
8秒前
QiuC发布了新的文献求助10
8秒前
完美世界应助hehe采纳,获得10
9秒前
Murray应助友好白风采纳,获得10
9秒前
9秒前
10秒前
Ava应助不想读书采纳,获得10
10秒前
合适小刺猬完成签到,获得积分10
12秒前
我是老大应助gypsi采纳,获得200
12秒前
liangliu完成签到 ,获得积分10
12秒前
Lucky发布了新的文献求助10
12秒前
复杂的兔子完成签到,获得积分10
13秒前
lsl发布了新的文献求助10
14秒前
14秒前
zw发布了新的文献求助10
14秒前
14秒前
cola完成签到 ,获得积分10
14秒前
洋洋洋完成签到,获得积分10
15秒前
15秒前
赘婿应助牛顿不吃果采纳,获得10
16秒前
要吃虾饺吗完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
CLSI EP47 Evaluation of Reagent Carryover Effects on Test Results, 1st Edition 800
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3055219
求助须知:如何正确求助?哪些是违规求助? 2711930
关于积分的说明 7429296
捐赠科研通 2356744
什么是DOI,文献DOI怎么找? 1248265
科研通“疑难数据库(出版商)”最低求助积分说明 606677
版权声明 596083