Double/debiased machine learning for treatment and structural parameters

过度拟合 估计员 正规化(语言学) 干扰参数 数学 算法 统计 人工智能 应用数学 计算机科学 人工神经网络
作者
Victor Chernozhukov,Denis Chetverikov,Mert Demirer,Esther Duflo,Christian Hansen,Whitney K. Newey,James M. Robins
出处
期刊:Econometrics Journal [Oxford University Press]
卷期号:21 (1): C1-C68 被引量:1445
标识
DOI:10.1111/ectj.12097
摘要

We revisit the classic semi‐parametric problem of inference on a low‐dimensional parameter θ0 in the presence of high‐dimensional nuisance parameters η0. We depart from the classical setting by allowing for η0 to be so high‐dimensional that the traditional assumptions (e.g. Donsker properties) that limit complexity of the parameter space for this object break down. To estimate η0, we consider the use of statistical or machine learning (ML) methods, which are particularly well suited to estimation in modern, very high‐dimensional cases. ML methods perform well by employing regularization to reduce variance and trading off regularization bias with overfitting in practice. However, both regularization bias and overfitting in estimating η0 cause a heavy bias in estimators of θ0 that are obtained by naively plugging ML estimators of η0 into estimating equations for θ0. This bias results in the naive estimator failing to be N−1/2 consistent, where N is the sample size. We show that the impact of regularization bias and overfitting on estimation of the parameter of interest θ0 can be removed by using two simple, yet critical, ingredients: (1) using Neyman‐orthogonal moments/scores that have reduced sensitivity with respect to nuisance parameters to estimate θ0; (2) making use of cross‐fitting, which provides an efficient form of data‐splitting. We call the resulting set of methods double or debiased ML (DML). We verify that DML delivers point estimators that concentrate in an N−1/2‐neighbourhood of the true parameter values and are approximately unbiased and normally distributed, which allows construction of valid confidence statements. The generic statistical theory of DML is elementary and simultaneously relies on only weak theoretical requirements, which will admit the use of a broad array of modern ML methods for estimating the nuisance parameters, such as random forests, lasso, ridge, deep neural nets, boosted trees, and various hybrids and ensembles of these methods. We illustrate the general theory by applying it to provide theoretical properties of the following: DML applied to learn the main regression parameter in a partially linear regression model; DML applied to learn the coefficient on an endogenous variable in a partially linear instrumental variables model; DML applied to learn the average treatment effect and the average treatment effect on the treated under unconfoundedness; DML applied to learn the local average treatment effect in an instrumental variables setting. In addition to these theoretical applications, we also illustrate the use of DML in three empirical examples.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hu发布了新的文献求助30
刚刚
shirai20001发布了新的文献求助10
1秒前
小二郎应助我不吃葱采纳,获得10
2秒前
皮崇知发布了新的文献求助10
2秒前
小绵羊完成签到 ,获得积分10
3秒前
半岛铁盒完成签到,获得积分10
4秒前
无花果应助聪明的元彤采纳,获得10
4秒前
不如无言完成签到,获得积分10
4秒前
可爱的函函应助孙淼采纳,获得10
6秒前
7秒前
天真的不尤完成签到 ,获得积分10
7秒前
英姑应助李哈哈采纳,获得10
10秒前
10秒前
完美世界应助云星天际采纳,获得10
12秒前
12秒前
13秒前
13秒前
lululala发布了新的文献求助10
13秒前
思维隋发布了新的文献求助10
13秒前
shao应助wbh采纳,获得20
14秒前
shao应助wbh采纳,获得20
14秒前
14秒前
16秒前
佟彦成发布了新的文献求助10
17秒前
ED应助11111111采纳,获得10
17秒前
18秒前
hrdcrhf发布了新的文献求助10
20秒前
20秒前
20秒前
20秒前
21秒前
林布林发布了新的文献求助10
21秒前
21秒前
iNk应助3080采纳,获得20
22秒前
李哈哈发布了新的文献求助10
23秒前
24秒前
24秒前
江江发布了新的文献求助10
24秒前
共享精神应助慈祥的如天采纳,获得10
26秒前
鲤跃发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993059
求助须知:如何正确求助?哪些是违规求助? 3533948
关于积分的说明 11264188
捐赠科研通 3273624
什么是DOI,文献DOI怎么找? 1806134
邀请新用户注册赠送积分活动 882991
科研通“疑难数据库(出版商)”最低求助积分说明 809629