溶解
微生物学
生物
肽聚糖
抗毒素
核酸
免疫
抗原
分泌物
细菌细胞结构
免疫系统
病毒学
毒素
细菌
免疫学
生物化学
遗传学
作者
Yanlin Tang,Qing Liu,Pei Li,Hongyan Luo,Qingke Kong
出处
期刊:PubMed
日期:2019-03-25
卷期号:35 (3): 375-388
标识
DOI:10.13345/j.cjb.180283
摘要
Recombinant bacterial vector vaccines have been widely used as carriers for the delivery of protective antigens and nucleic acid vaccines to prevent certain infectious diseases because of their ability to induce mucosal immunity, humoral immunity and cellular immunity. However, protective antigens and nucleic acids recombined into bacterial vector vaccines are difficult to be released into host cells because of the presence of bacterial cell wall. Vaccine strains that are residual in animals or livestock products may also cause environmental contamination and spread of the vaccine strains. The effective solution for these problems is to construct an auto-lysis system that can regulate the vaccine strains to grow normally in vitro while lysis in vivo. The lysis systems that have been applied in germs mainly include: the lysis system based on regulated delayed peptidoglycan synthesis, the lysis system based on the regulation of bacteriophage lysis protein and the lysis system based on the toxin-antitoxin system. In addition, a potential lysis system based on bacterial Type Ⅵ Secretion System (T6SS) is also expected to be a new method for the construction of auto-lysis strains. This review will focus on the regulatory mechanisms of these bacterial lysis systems.重组细菌载体疫苗因其能够诱导机体产生粘膜免疫、体液免疫和细胞免疫的特点,已经被广泛用作递送保护性抗原和核酸疫苗的载体来预防某些传染病。但是重组到细菌载体疫苗中的保护性抗原和核酸难以穿越细菌细胞壁释放到宿主细胞内发挥作用,残留在动物或畜禽产品中的疫苗菌株还可能造成环境的污染和疫苗菌株的传播。而有效解决这些问题的方法是构建一种细菌自动裂解系统,使疫苗菌株能够在体外培养时正常生长而在体内环境中自动裂解死亡。目前主要应用的细菌裂解系统包括:基于调控延迟肽聚糖合成的裂解系统、基于噬菌体裂解蛋白调控的裂解系统、基于毒素-抗毒素系统 (Toxin-antitoxin system) 的裂解系统。此外,一种潜在的基于细菌Ⅵ 型分泌系统 (Type Ⅵ secretion system,T6SS) 的裂解系统也有望成为构建自动裂解菌株的新方法。文中将着重对这几种裂解系统的调控机制进行阐述。.
科研通智能强力驱动
Strongly Powered by AbleSci AI