肠道菌群
新陈代谢
短链脂肪酸
生物
麸皮
色氨酸
生物化学
内分泌学
内科学
丁酸盐
氨基酸
医学
生态学
发酵
原材料
作者
Zuzanna Maria Kundi,Jetty Chung‐Yung Lee,Jussi Pihlajamäki,Chi Bun Chan,Kin Sum Leung,Stephanie So,Emilia Nordlund,Marjukka Kolehmainen,Hani El‐Nezami
标识
DOI:10.1002/mnfr.201900580
摘要
Dietary fiber (DF) induces changes in gut microbiota function and thus modulates the gut environment. How this modulation is associated with metabolic pathways related to the gut is largely unclear. This study aims to investigate differences in metabolites produced by the gut microbiota and their interactions with host metabolism in response to supplementation with two bran fibers. Male C57BL/6N mice are fed a western diet (WD) for 17 weeks. Two groups of mice received a diet enriched with 10% w/w of either oat or rye bran, with each bran containing 50% DF. Microbial metabolites are assessed by measuring cecal short-chain fatty acids (SCFAs), ileal and fecal bile acids (BAs), and the expression of genes related to tryptophan (TRP) metabolism. Both brans lowered body weight gain and ameliorated WD-induced impaired glucose responses, hepatic inflammation, liver enzymes, and gut integrity markers associated with SCFA production, altered BA metabolism, and TRP diversion from the serotonin synthesis pathway to microbial indole production. Both brans develop a favorable environment in the gut by altering the composition of microbes and modulating produced metabolites. Changes induced in the gut environment by a fiber-enriched diet may explain the amelioration of metabolic disturbances related to WD.
科研通智能强力驱动
Strongly Powered by AbleSci AI