Development of advanced hydrogenation processes for silicon solar cells via an improved understanding of the behaviour of hydrogen in silicon

钝化 材料科学 太阳能电池 晶界 纳米技术 光电子学 化学 冶金 微观结构 有机化学 图层(电子)
作者
Brett Hallam,Phillip Hamer,Alison Ciesla,Catherine Chan,Bruno Stefani Esposto,Stuart Wenham
出处
期刊:Progress in Photovoltaics [Wiley]
卷期号:28 (12): 1217-1238 被引量:54
标识
DOI:10.1002/pip.3240
摘要

Abstract The understanding and development of advanced hydrogenation processes for silicon solar cells are presented. Hydrogen passivation is incorporated into virtually all silicon solar cells, yet the properties of hydrogen in silicon are still poorly understood. This is largely due to the complex behaviour of hydrogen in silicon and its ability to exist in many different forms in the lattice. For commercial solar cells, hydrogen is introduced into the device through the deposition of hydrogen‐containing dielectric layers and the subsequent metallisation firing process. This process can readily passivate structural defects such as grain boundaries but is ineffective at passivating numerous defects in silicon solar cells such as the boron‐oxygen complex, responsible for light‐induced degradation in p‐type Czochralski silicon. This difficulty is due to the need to first form the boron‐oxygen defect and also due to atomic hydrogen naturally occupying low‐mobility and low‐reactivity charge states. However, these challenges can be overcome using advanced hydrogenation processes incorporating excess carrier generation from illumination or current injection that increase the concentration of the highly mobile and reactive neutral charge state. As a result, after fast firing, additional low‐temperature advanced hydrogenation processes incorporating illumination can be implemented to enable the passivation of difficult defects like the boron‐oxygen complex. With the implementation of such processes for industrial silicon solar cells, efficiency improvements of 1.1% absolute can be obtained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助啊娴仔采纳,获得10
2秒前
科研通AI2S应助啊娴仔采纳,获得10
2秒前
Jemmy发布了新的文献求助10
2秒前
李健应助叶凡采纳,获得10
4秒前
无限的山水完成签到 ,获得积分10
5秒前
汉堡包应助大云豆采纳,获得10
5秒前
白柃发布了新的文献求助10
6秒前
9秒前
Jemmy完成签到,获得积分10
10秒前
12秒前
安详的大象完成签到 ,获得积分10
13秒前
volvoamg发布了新的文献求助10
13秒前
冷静的哈密瓜完成签到,获得积分10
14秒前
叶凡发布了新的文献求助10
17秒前
我就是KKKK发布了新的文献求助10
19秒前
玖蔡合子完成签到,获得积分10
21秒前
Jaylou完成签到,获得积分10
22秒前
24秒前
潘榆完成签到,获得积分10
27秒前
我到家盛极必衰完成签到 ,获得积分20
32秒前
33秒前
1278day完成签到,获得积分10
36秒前
CipherSage应助吕健采纳,获得10
38秒前
惟依发布了新的文献求助10
38秒前
上官若男应助科研通管家采纳,获得10
39秒前
39秒前
39秒前
领导范儿应助科研通管家采纳,获得10
39秒前
Lucas应助科研通管家采纳,获得30
39秒前
41秒前
风姿物语完成签到,获得积分10
41秒前
42秒前
44秒前
xgvf胥完成签到 ,获得积分10
45秒前
研友_842aln发布了新的文献求助10
47秒前
50秒前
51秒前
洋洋完成签到 ,获得积分10
51秒前
weiling发布了新的文献求助10
54秒前
星辰大海应助真实的安波采纳,获得10
54秒前
高分求助中
LNG地下式貯槽指針(JGA指-107) 1000
LNG地上式貯槽指針 (JGA指 ; 108) 1000
QMS18Ed2 | process management. 2nd ed 600
LNG as a marine fuel—Safety and Operational Guidelines - Bunkering 560
How Stories Change Us A Developmental Science of Stories from Fiction and Real Life 500
九经直音韵母研究 500
Full waveform acoustic data processing 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2935086
求助须知:如何正确求助?哪些是违规求助? 2590481
关于积分的说明 6979031
捐赠科研通 2235599
什么是DOI,文献DOI怎么找? 1187264
版权声明 589863
科研通“疑难数据库(出版商)”最低求助积分说明 581210