已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of advanced hydrogenation processes for silicon solar cells via an improved understanding of the behaviour of hydrogen in silicon

钝化 材料科学 太阳能电池 晶界 纳米技术 光电子学 化学 冶金 微观结构 有机化学 图层(电子)
作者
Brett Hallam,Phillip Hamer,Alison Ciesla,Catherine Chan,Bruno Stefani Esposto,Stuart Wenham
出处
期刊:Progress in Photovoltaics [Wiley]
卷期号:28 (12): 1217-1238 被引量:54
标识
DOI:10.1002/pip.3240
摘要

Abstract The understanding and development of advanced hydrogenation processes for silicon solar cells are presented. Hydrogen passivation is incorporated into virtually all silicon solar cells, yet the properties of hydrogen in silicon are still poorly understood. This is largely due to the complex behaviour of hydrogen in silicon and its ability to exist in many different forms in the lattice. For commercial solar cells, hydrogen is introduced into the device through the deposition of hydrogen‐containing dielectric layers and the subsequent metallisation firing process. This process can readily passivate structural defects such as grain boundaries but is ineffective at passivating numerous defects in silicon solar cells such as the boron‐oxygen complex, responsible for light‐induced degradation in p‐type Czochralski silicon. This difficulty is due to the need to first form the boron‐oxygen defect and also due to atomic hydrogen naturally occupying low‐mobility and low‐reactivity charge states. However, these challenges can be overcome using advanced hydrogenation processes incorporating excess carrier generation from illumination or current injection that increase the concentration of the highly mobile and reactive neutral charge state. As a result, after fast firing, additional low‐temperature advanced hydrogenation processes incorporating illumination can be implemented to enable the passivation of difficult defects like the boron‐oxygen complex. With the implementation of such processes for industrial silicon solar cells, efficiency improvements of 1.1% absolute can be obtained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
3秒前
天天快乐应助xiaofeixia采纳,获得50
6秒前
松间蓝雾关注了科研通微信公众号
7秒前
现代哑铃发布了新的文献求助100
8秒前
8秒前
10秒前
10秒前
小巧谷波应助玉衡采纳,获得10
15秒前
15秒前
黑森林发布了新的文献求助10
15秒前
16秒前
量子星尘发布了新的文献求助10
17秒前
现代哑铃完成签到,获得积分10
18秒前
烂漫含雁发布了新的文献求助10
20秒前
万事屋完成签到 ,获得积分10
20秒前
22秒前
风清扬应助杨颖采纳,获得10
22秒前
小马甲应助科研通管家采纳,获得10
22秒前
无花果应助科研通管家采纳,获得10
22秒前
Rondab应助科研通管家采纳,获得10
23秒前
汉堡包应助科研通管家采纳,获得10
23秒前
Orange应助科研通管家采纳,获得10
23秒前
田様应助科研通管家采纳,获得10
23秒前
黑森林完成签到,获得积分10
25秒前
LIN应助依依采纳,获得50
26秒前
勤恳的TT完成签到 ,获得积分10
27秒前
松间蓝雾发布了新的文献求助10
31秒前
32秒前
烂漫含雁完成签到,获得积分10
35秒前
徐zhipei完成签到 ,获得积分10
37秒前
Wang发布了新的文献求助10
37秒前
完美世界应助依依采纳,获得10
38秒前
大金鱼完成签到 ,获得积分10
42秒前
年轻的醉冬完成签到 ,获得积分10
44秒前
董二千发布了新的文献求助10
46秒前
雷家完成签到,获得积分10
47秒前
哈哈哈哈完成签到 ,获得积分10
48秒前
Metx完成签到 ,获得积分10
50秒前
安静一曲完成签到 ,获得积分10
51秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956940
求助须知:如何正确求助?哪些是违规求助? 3502979
关于积分的说明 11110880
捐赠科研通 3233958
什么是DOI,文献DOI怎么找? 1787694
邀请新用户注册赠送积分活动 870713
科研通“疑难数据库(出版商)”最低求助积分说明 802234