Development of advanced hydrogenation processes for silicon solar cells via an improved understanding of the behaviour of hydrogen in silicon

钝化 材料科学 太阳能电池 晶界 纳米技术 光电子学 化学 冶金 微观结构 有机化学 图层(电子)
作者
Brett Hallam,Phillip Hamer,Alison Ciesla,Catherine Chan,Bruno Stefani Esposto,Stuart Wenham
出处
期刊:Progress in Photovoltaics [Wiley]
卷期号:28 (12): 1217-1238 被引量:54
标识
DOI:10.1002/pip.3240
摘要

Abstract The understanding and development of advanced hydrogenation processes for silicon solar cells are presented. Hydrogen passivation is incorporated into virtually all silicon solar cells, yet the properties of hydrogen in silicon are still poorly understood. This is largely due to the complex behaviour of hydrogen in silicon and its ability to exist in many different forms in the lattice. For commercial solar cells, hydrogen is introduced into the device through the deposition of hydrogen‐containing dielectric layers and the subsequent metallisation firing process. This process can readily passivate structural defects such as grain boundaries but is ineffective at passivating numerous defects in silicon solar cells such as the boron‐oxygen complex, responsible for light‐induced degradation in p‐type Czochralski silicon. This difficulty is due to the need to first form the boron‐oxygen defect and also due to atomic hydrogen naturally occupying low‐mobility and low‐reactivity charge states. However, these challenges can be overcome using advanced hydrogenation processes incorporating excess carrier generation from illumination or current injection that increase the concentration of the highly mobile and reactive neutral charge state. As a result, after fast firing, additional low‐temperature advanced hydrogenation processes incorporating illumination can be implemented to enable the passivation of difficult defects like the boron‐oxygen complex. With the implementation of such processes for industrial silicon solar cells, efficiency improvements of 1.1% absolute can be obtained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
swing发布了新的文献求助10
1秒前
1秒前
creep完成签到,获得积分10
2秒前
xxc发布了新的文献求助10
2秒前
栗子鱼发布了新的文献求助10
2秒前
刘刘刘发布了新的文献求助20
3秒前
香蕉豌豆完成签到,获得积分10
3秒前
大红完成签到,获得积分10
3秒前
ziying126发布了新的文献求助10
4秒前
5秒前
善学以致用应助某某采纳,获得80
5秒前
6秒前
Johnny完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
大红发布了新的文献求助10
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
852应助科研通管家采纳,获得10
8秒前
英俊的铭应助科研通管家采纳,获得10
8秒前
科研通AI2S应助科研通管家采纳,获得10
8秒前
打打应助科研通管家采纳,获得10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
薰硝壤应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
9秒前
zc完成签到,获得积分20
10秒前
都是发布了新的文献求助10
11秒前
小羊完成签到,获得积分20
12秒前
FZY发布了新的文献求助10
12秒前
laohu2发布了新的文献求助10
13秒前
14秒前
丘比特应助苹果蜗牛采纳,获得10
14秒前
14秒前
zc发布了新的文献求助10
14秒前
小羊发布了新的文献求助10
14秒前
科研通AI2S应助都是采纳,获得30
15秒前
16秒前
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
A new approach of magnetic circular dichroism to the electronic state analysis of intact photosynthetic pigments 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149056
求助须知:如何正确求助?哪些是违规求助? 2800110
关于积分的说明 7838594
捐赠科研通 2457644
什么是DOI,文献DOI怎么找? 1307938
科研通“疑难数据库(出版商)”最低求助积分说明 628362
版权声明 601685