内吞作用
体内
胞饮病
细胞生物学
纳米毒理学
纳米颗粒
活体显微镜检查
清道夫受体
单核吞噬细胞系统
生物物理学
材料科学
纳米技术
巨噬细胞
化学
体外
细胞
生物
免疫学
生物化学
生物技术
胆固醇
脂蛋白
作者
Yuya Hayashi,M Takamiya,Pia Bomholt Jensen,Isaac Ojea‐Jiménez,Hélicia Claude,Claude Antony,Kasper Kjær-Sørensen,Clemens Grabher,Thomas Boesen,Douglas Gilliland,Claus Oxvig,Uwe Strähle,Carsten Weiß
出处
期刊:ACS Nano
[American Chemical Society]
日期:2020-01-10
卷期号:14 (2): 1665-1681
被引量:70
标识
DOI:10.1021/acsnano.9b07233
摘要
Despite the common knowledge that the reticuloendothelial system is largely responsible for blood clearance of systemically administered nanoparticles, the sequestration mechanism remains a "black box". Using transgenic zebrafish embryos with cell type-specific fluorescent reporters and fluorescently labeled model nanoparticles (70 nm SiO2), we here demonstrate simultaneous three-color in vivo imaging of intravenously injected nanoparticles, macrophages, and scavenger endothelial cells (SECs). The trafficking processes were further revealed at ultrastructural resolution by transmission electron microscopy. We also find, using a correlative light-electron microscopy approach, that macrophages rapidly sequester nanoparticles via membrane adhesion and endocytosis (including macropinocytosis) within minutes after injection. In contrast, SECs trap single nanoparticles via scavenger receptor-mediated endocytosis, resulting in gradual sequestration with a time scale of hours. Inhibition of the scavenger receptors prevented SECs from accumulating nanoparticles but enhanced uptake in macrophages, indicating the competitive nature of nanoparticle clearance in vivo. To directly quantify the relative contributions of the two cell types to overall nanoparticle sequestration, the differential sequestration kinetics was studied within the first 30 min post-injection. This revealed a much higher and increasing relative contribution of SECs, as they by far outnumber macrophages in zebrafish embryos, suggesting the importance of the macrophage:SECs ratio in a given tissue. Further characterizing macrophages on their efficiency in nanoparticle clearance, we show that inflammatory stimuli diminish the uptake of nanoparticles per cell. Our study demonstrates the strength of transgenic zebrafish embryos for intravital real-time and ultrastructural imaging of nanomaterials that may provide mechanistic insights into nanoparticle clearance in rodent models and humans.
科研通智能强力驱动
Strongly Powered by AbleSci AI