材料科学
过电位
析氧
甲醇
制氢
电催化剂
电解
法拉第效率
钴
碱性水电解
化学工程
格式化
阳极
氢氧化物
电化学
无机化学
氢
催化作用
电解质
有机化学
电极
物理化学
化学
工程类
作者
Kun Xiang,Dan Wu,Xiaohui Deng,Mei Li,Shanyong Chen,Panpan Hao,Xuefeng Guo,Jing‐Li Luo,Xian‐Zhu Fu
标识
DOI:10.1002/adfm.201909610
摘要
Abstract The sluggish kinetics of oxygen evolution reaction (OER) is the main bottleneck for the electrocatalytic water splitting to produce hydrogen (H 2 ), and the by‐product is worthless O 2 . Therefore, designing a thermodynamically favorable oxidation reaction to replace OER and coupling with value‐added product generation on the anode is of significance for boosting H 2 generation under low electrolysis voltage. Herein, cobalt hydroxide@hydroxysulfide nanosheets on carbon paper (Co(OH) 2 @HOS/CP) are synthesized as bifunctional electrocatalysts to facilitate H 2 production and convert methanol to valuable formate simultaneously. Benefiting from the influences/changes on the composition, surface properties, electronic structure, and chemistry of Co(OH) 2 , the as‐obtained electrodes exhibit very high selectivity for methanol to value‐added formate oxidation (MFO) and boost electrocatalytic performance with low overpotential of 155 mV for MFO and 148 mV for hydrogen evolution reaction at a current density of 10 mA cm −2 . Furthermore, the integrated two‐electrode electrolyzer drives 10 mA cm −2 at a cell voltage of 1.497 V with united 100% Faradaic efficiency for anodic and cathodic reaction and continuous 20 h of operation without obvious decay. The electrocatalytic hydrogen production with the assistance of alternative oxidation by the robust electrocatalyst can be further used to realize the upgrading of other organic molecules with less energy consumption.
科研通智能强力驱动
Strongly Powered by AbleSci AI