Degp degrades a wide range of substrate proteins in Escherichia coli under stress conditions

周质间隙 细菌外膜 大肠杆菌 蛋白质折叠 生物 蛋白酶 伴侣(临床) 生物化学 热休克蛋白 细胞生物学 医学 病理 基因
作者
Shuang Zhang,Yu Cheng,Jing Ma,Yan Wang,Zengyi Chang,Xinmiao Fu
出处
期刊:Biochemical Journal [Portland Press]
卷期号:476 (23): 3549-3564 被引量:13
标识
DOI:10.1042/bcj20190446
摘要

DegP, a periplasmic dual-functional protease and chaperone in Gram-negative bacteria, is critical for bacterial stress resistance, but the precise underlying mechanisms are not fully understood. Here, we show that the protease function of DegP is critical for Escherichia coli cells to maintain membrane integrity, particularly under heat shock conditions (42°C). Site-directed photo-cross-linking, mass spectrometry and immunoblotting analyses reveal that both periplasmic proteins (e.g. OppA and MalE) and β-barrel outer membrane proteins (OMPs) are DegP-interacting proteins and that OppA is degraded by DegP in vitro and in vivo at 42°C. In addition, OmpA and BamA, chimeric β-barrel OMPs containing a soluble periplasmic domain, are bound to DegP in both unfolded and folded forms, whereas only the unfolded forms are degradable by DegP. The presence of folded OmpA as a substrate of DegP is attributed to its periplasmic domain, which is resistant to DegP degradation and even generally protects pure β-barrel OMPs from degradation in an intra-molecular way. Furthermore, a pair of residues (R262 and V328) in the PDZ domain-1 of DegP play important roles for binding unfolded and folded β-barrel OMPs, with R262 being critical. Our study, together with earlier reports, indicates that DegP plays a critical role in protein quality control in the bacterial periplasm by degrading both periplasmic proteins and β-barrel OMPs under stress conditions and likely also by participating in the folding of chimeric β-barrel OMPs. A working model is proposed to illustrate the finely tuned functions of DegP with respect to different substrate proteins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aikeyan完成签到,获得积分10
刚刚
我是老大应助L山间葱采纳,获得10
1秒前
1秒前
波风水门pxf完成签到,获得积分10
1秒前
小俊完成签到,获得积分10
2秒前
悬夜完成签到,获得积分10
2秒前
3秒前
狗不理发布了新的文献求助10
3秒前
edtaa发布了新的文献求助10
3秒前
3秒前
lewis17发布了新的文献求助10
4秒前
sens发布了新的文献求助10
4秒前
DamonChen完成签到,获得积分10
4秒前
NexusExplorer应助Lawenced采纳,获得10
4秒前
4秒前
WuLujie发布了新的文献求助10
4秒前
不做Aspirin完成签到 ,获得积分10
4秒前
mylove应助morry5007采纳,获得10
5秒前
隐形曼青应助Aurora采纳,获得10
5秒前
从容问雁发布了新的文献求助10
5秒前
5秒前
woshiwuziq完成签到 ,获得积分10
5秒前
SciGPT应助健忘的自行车采纳,获得20
6秒前
QWE发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
我是老大应助白苹果采纳,获得10
8秒前
Jackxu发布了新的文献求助10
8秒前
8秒前
Linda发布了新的文献求助30
8秒前
liuttinn完成签到,获得积分10
8秒前
所所应助刘丰铭采纳,获得10
9秒前
9秒前
9秒前
9秒前
能干冰露发布了新的文献求助10
9秒前
脑洞疼应助王则华采纳,获得10
9秒前
Leon发布了新的文献求助20
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836