Degp degrades a wide range of substrate proteins in Escherichia coli under stress conditions

周质间隙 细菌外膜 大肠杆菌 蛋白质折叠 生物 蛋白酶 伴侣(临床) 生物化学 热休克蛋白 细胞生物学 医学 病理 基因
作者
Shuang Zhang,Yu Ti Cheng,Jing Ma,Yan Wang,Zengyi Chang,Xinmiao Fu
出处
期刊:Biochemical Journal [Portland Press]
卷期号:476 (23): 3549-3564 被引量:10
标识
DOI:10.1042/bcj20190446
摘要

DegP, a periplasmic dual-functional protease and chaperone in Gram-negative bacteria, is critical for bacterial stress resistance, but the precise underlying mechanisms are not fully understood. Here, we show that the protease function of DegP is critical for Escherichia coli cells to maintain membrane integrity, particularly under heat shock conditions (42°C). Site-directed photo-cross-linking, mass spectrometry and immunoblotting analyses reveal that both periplasmic proteins (e.g. OppA and MalE) and β-barrel outer membrane proteins (OMPs) are DegP-interacting proteins and that OppA is degraded by DegP in vitro and in vivo at 42°C. In addition, OmpA and BamA, chimeric β-barrel OMPs containing a soluble periplasmic domain, are bound to DegP in both unfolded and folded forms, whereas only the unfolded forms are degradable by DegP. The presence of folded OmpA as a substrate of DegP is attributed to its periplasmic domain, which is resistant to DegP degradation and even generally protects pure β-barrel OMPs from degradation in an intra-molecular way. Furthermore, a pair of residues (R262 and V328) in the PDZ domain-1 of DegP play important roles for binding unfolded and folded β-barrel OMPs, with R262 being critical. Our study, together with earlier reports, indicates that DegP plays a critical role in protein quality control in the bacterial periplasm by degrading both periplasmic proteins and β-barrel OMPs under stress conditions and likely also by participating in the folding of chimeric β-barrel OMPs. A working model is proposed to illustrate the finely tuned functions of DegP with respect to different substrate proteins.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1147468624完成签到,获得积分20
刚刚
小毛毛发布了新的文献求助10
刚刚
爱吃泡芙发布了新的文献求助10
1秒前
轩辕沛柔发布了新的文献求助10
1秒前
淡定发布了新的文献求助10
2秒前
Klaus发布了新的文献求助10
2秒前
2秒前
2秒前
慕青应助权思远采纳,获得10
3秒前
星辰大海应助天真的眼神采纳,获得10
3秒前
4秒前
4秒前
CodeCraft应助shun采纳,获得10
5秒前
5秒前
天天快乐应助huanhuan采纳,获得10
5秒前
7秒前
丘比特应助zhbbbb采纳,获得10
7秒前
蔚蓝发布了新的文献求助10
7秒前
7秒前
如意烨霖发布了新的文献求助20
8秒前
归海凡儿完成签到,获得积分10
8秒前
FIN应助1147468624采纳,获得10
8秒前
9秒前
踏实如曼完成签到,获得积分10
9秒前
激动的钢铁侠完成签到,获得积分10
11秒前
12秒前
13秒前
xin完成签到 ,获得积分10
14秒前
冰火菠萝包完成签到,获得积分10
14秒前
大虎完成签到,获得积分10
15秒前
599发布了新的文献求助30
15秒前
小付发布了新的文献求助10
15秒前
17秒前
17秒前
fanghao发布了新的文献求助10
17秒前
17秒前
bkagyin应助书双采纳,获得10
18秒前
18秒前
Nan语发布了新的文献求助10
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462284
求助须知:如何正确求助?哪些是违规求助? 3055899
关于积分的说明 9049652
捐赠科研通 2745475
什么是DOI,文献DOI怎么找? 1506346
科研通“疑难数据库(出版商)”最低求助积分说明 696073
邀请新用户注册赠送积分活动 695618