材料科学
生物医学工程
传感器
电生理学
烧蚀
心脏电生理学
计算机科学
光学测图
声学
心脏病学
医学
内科学
物理
作者
Kyoseung Sim,Faheem Ershad,Yongcao Zhang,Pinyi Yang,Hyunseok Shim,Zhoulyu Rao,Yuntao Lu,Anish Thukral,Abdelmotagaly Elgalad,Yutao Xi,Bozhi Tian,Doris A. Taylor,Cunjiang Yu
标识
DOI:10.1038/s41928-020-00493-6
摘要
An epicardial bioelectronic patch is an important device for investigating and treating heart diseases. The ideal device should possess cardiac-tissue-like mechanical softness and deformability, and be able to perform spatiotemporal mapping of cardiac conduction characteristics and other physical parameters. However, existing patches constructed from rigid materials with structurally engineered mechanical stretchability still have a hard–soft interface with the epicardium, which can strain cardiac tissue and does not allow for deformation with a beating heart. Alternatively, patches made from intrinsically soft materials lack spatiotemporal mapping or sensing capabilities. Here, we report an epicardial bioelectronic patch that is made from materials matching the mechanical softness of heart tissue and can perform spatiotemporal mapping of electrophysiological activity, as well as strain and temperature sensing. Its capabilities are illustrated on a beating porcine heart. We also show that the patch can provide therapeutic capabilities (electrical pacing and thermal ablation), and that a rubbery mechanoelectrical transducer can harvest energy from heart beats, potentially providing a power source for epicardial devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI