亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Damage Sensitive PCA-FRF Feature in Unsupervised Machine Learning for Damage Detection of Plate-Like Structures

结构健康监测 主成分分析 频率响应 特征(语言学) 灵敏度(控制系统) 模式识别(心理学) 重复性 聚类分析 计算机科学 振动 人工智能 结构工程 生物系统 工程类 数学 声学 电子工程 统计 物理 哲学 电气工程 生物 语言学
作者
Pei Yi Siow,Zhi Chao Ong,Shin Yee Khoo,K P Lim
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
卷期号:21 (02): 2150028-2150028 被引量:11
标识
DOI:10.1142/s0219455421500280
摘要

Damage detection is important in maintaining the integrity and safety of structures. The vibration-based Structural Health Monitoring (SHM) methods have been explored and applied extensively by researchers due to its non-destructive manner. The damage sensitivity of features used can significantly affect the accuracy of the vibration-based damage identification methods. The Frequency Response Function (FRF) was used as a damage sensitive feature in several works due to its rich yet compact representation of dynamic properties of a structure. However, utilizing the full size of FRFs in damage assessment requires high processing and computational time. A novel reduction technique using Principal Component Analysis (PCA) and peak detection on raw FRFs is proposed to extract the main damage sensitive feature while maintaining the dynamic characteristics. A rectangular Perspex plate with ground supports, simulating an automobile, was used for damage assessment. The damage sensitivity of the extracted feature, i.e. PCA-FRF is then evaluated using unsupervised [Formula: see text]-means clustering results. The proposed method is found to exaggerate the shift of damaged data from undamaged data and improve the repeatability of the PCA-FRF. The PCA-FRF feature is shown to have higher damage sensitivity compared to the raw FRFs, in which it yielded well-clustered results even for low damage conditions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助石榴汁的书采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
肥猪完成签到,获得积分10
12秒前
赘婿应助Zhao0112采纳,获得10
15秒前
18秒前
18秒前
25秒前
陈毅发布了新的文献求助10
29秒前
吴端完成签到,获得积分10
29秒前
37秒前
41秒前
45秒前
PP发布了新的文献求助10
47秒前
52秒前
耿双贵发布了新的文献求助30
56秒前
58秒前
Suu完成签到,获得积分10
1分钟前
1分钟前
不可靠的黏菌完成签到,获得积分10
1分钟前
铜锣烧完成签到 ,获得积分10
1分钟前
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
1分钟前
852应助张家宁采纳,获得10
1分钟前
耿双贵完成签到,获得积分20
1分钟前
1分钟前
白华苍松发布了新的文献求助20
1分钟前
烟消云散发布了新的文献求助80
1分钟前
haipronl应助Bowman采纳,获得50
1分钟前
Lucas应助烟消云散采纳,获得10
2分钟前
壮观的谷冬完成签到 ,获得积分0
2分钟前
渥鸡蛋完成签到 ,获得积分10
2分钟前
情怀应助wzc采纳,获得10
2分钟前
2分钟前
2分钟前
烟消云散发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5755264
求助须知:如何正确求助?哪些是违规求助? 5492899
关于积分的说明 15381023
捐赠科研通 4893471
什么是DOI,文献DOI怎么找? 2632093
邀请新用户注册赠送积分活动 1579947
关于科研通互助平台的介绍 1535765