MS-CleanR: A Feature-Filtering Workflow for Untargeted LC–MS Based Metabolomics

代谢组学 工作流程 化学 特征(语言学) 计算生物学 计算机科学 色谱法 数据库 生物 语言学 哲学
作者
Ophélie Fraisier,Justine Chervin,Guillaume Cabanac,Virginie Puech Pagès,Sylvie Fournier,Virginie Durand,Aurélien Amiel,Olivier André,Omar Abdelaziz Benamar,Bernard Dumas,Hiroshi Tsugawa,Guillaume Marti
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:92 (14): 9971-9981 被引量:62
标识
DOI:10.1021/acs.analchem.0c01594
摘要

Untargeted metabolomics using liquid chromatography-mass spectrometry (LC-MS) is currently the gold-standard technique to determine the full chemical diversity in biological samples. However, this approach still has many limitations; notably, the difficulty of accurately estimating the number of unique metabolites profiled among the thousands of MS ion signals arising from chromatograms. Here, we describe a new workflow, MS-CleanR, based on the MS-DIAL/MS-FINDER suite, which tackles feature degeneracy and improves annotation rates. We show that implementation of MS-CleanR reduces the number of signals by nearly 80% while retaining 95% of unique metabolite features. Moreover, the annotation results from MS-FINDER can be ranked according to the database chosen by the user, which enhance identification accuracy. Application of MS-CleanR to the analysis of Arabidopsis thaliana grown in three different conditions fostered class separation resulting from multivariate data analysis and led to annotation of 75% of the final features. The full workflow was applied to metabolomic profiles from three strains of the leguminous plant Medicago truncatula that have different susceptibilities to the oomycete pathogen Aphanomyces euteiches. A group of glycosylated triterpenoids overrepresented in resistant lines were identified as candidate compounds conferring pathogen resistance. MS-CleanR is implemented through a Shiny interface for intuitive use by end-users (available at https://github.com/eMetaboHUB/MS-CleanR).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
tender完成签到,获得积分10
1秒前
简称王完成签到 ,获得积分10
1秒前
mhl11应助浪里白条采纳,获得10
2秒前
wonwoo完成签到,获得积分10
2秒前
健忘的寻菱完成签到 ,获得积分10
3秒前
Owen应助尉迟如音采纳,获得10
3秒前
听寒完成签到,获得积分10
4秒前
4秒前
4秒前
燕儿发布了新的文献求助20
5秒前
6秒前
bkagyin应助migratorybird采纳,获得10
6秒前
7秒前
Polaris完成签到,获得积分10
7秒前
九又四分之三完成签到,获得积分10
7秒前
叶颤完成签到,获得积分10
8秒前
文艺明杰完成签到,获得积分10
9秒前
六个核桃发布了新的文献求助10
9秒前
9秒前
10秒前
浮名半生发布了新的文献求助10
11秒前
学术大白发布了新的文献求助10
12秒前
77发布了新的文献求助10
12秒前
科研通AI2S应助海绵宝宝采纳,获得10
13秒前
TTTT发布了新的文献求助10
14秒前
CodeCraft应助pear采纳,获得10
14秒前
慢歌完成签到 ,获得积分10
15秒前
ytx完成签到,获得积分20
15秒前
保持理智完成签到,获得积分10
16秒前
蔚蓝绽放完成签到,获得积分10
18秒前
我是老大应助xiaowen采纳,获得10
19秒前
烟花应助好好毕业采纳,获得10
19秒前
Singularity发布了新的文献求助10
20秒前
Ganlou应助暖粥采纳,获得10
20秒前
听诊器完成签到 ,获得积分10
22秒前
23秒前
23秒前
77完成签到,获得积分10
23秒前
烟花应助小旋风采纳,获得10
24秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308738
求助须知:如何正确求助?哪些是违规求助? 2942021
关于积分的说明 8507135
捐赠科研通 2617034
什么是DOI,文献DOI怎么找? 1429940
科研通“疑难数据库(出版商)”最低求助积分说明 663969
邀请新用户注册赠送积分活动 649160