生物膜
微囊藻毒素
溶解有机碳
蓝藻
环境化学
蓝毒素
化学
微生物种群生物学
有机质
微囊藻毒素
过滤(数学)
生物降解
微生物学
生物
细菌
遗传学
统计
有机化学
数学
作者
Youchul Jeon,Lei Li,Jose Calvillo,Hodon Ryu,Jorge W. Santo Domingo,Onekyun Choi,Jess Brown,Young‐Woo Seo
出处
期刊:Water Research
[Elsevier]
日期:2020-07-01
卷期号:184: 116120-116120
被引量:26
标识
DOI:10.1016/j.watres.2020.116120
摘要
The occurrence of harmful algal blooms dominated by toxic cyanobacteria has induced continuous loadings of algal organic matter (AOM) and toxins in drinking water treatment plants. However, the impact of AOM on the active biofilms and microbial community structures of biologically-active filtration (BAF), which directly affects the contaminant removal, is not well understood. In this study, we systematically examined the effects of AOM on BAF performance and bacterial biofilm formation over 240 days, tracing the removal of specific AOM components, a cyanotoxin [microcystin-LR (MC-LR)], and microbial community responses. The component analysis (excitation and emission matrix analysis) results for AOM revealed that terrestrial humic-like substances showed the highest removal among all the identified components and were strongly correlated to MC-LR removal. In addition, reduced empty bed contact time and deactivation of biofilms significantly decreased BAF performances for both AOM and MC-LR. The active biofilm, bacterial community structure, and mlrA gene (involved in microcystin degradation) abundance demonstrated that bacterial biofilm composition responded to AOM and MC-LR, in which Rhodocyclaceae, Saprospiraceae, and Comamonadaceae were dominant. In addition, MC-LR biodegradation appeared to be more active at the top than at the bottom layer in BAF. Overall, this study provides deeper insights into the role of biofilms and filter operation on the fate of AOM and MC-LR in BAF.
科研通智能强力驱动
Strongly Powered by AbleSci AI