A practical tutorial on bagging and boosting based ensembles for machine learning: Algorithms, software tools, performance study, practical perspectives and opportunities

Boosting(机器学习) 计算机科学 机器学习 随机森林 集成学习 人工智能 工作流程 范畴变量 软件 决策树 梯度升压 算法 数据挖掘 数据库 程序设计语言
作者
Sergio González,Salvador García,Javier Del Ser,Lior Rokach,Francisco Herrera
出处
期刊:Information Fusion [Elsevier]
卷期号:64: 205-237 被引量:319
标识
DOI:10.1016/j.inffus.2020.07.007
摘要

Ensembles, especially ensembles of decision trees, are one of the most popular and successful techniques in machine learning. Recently, the number of ensemble-based proposals has grown steadily. Therefore, it is necessary to identify which are the appropriate algorithms for a certain problem. In this paper, we aim to help practitioners to choose the best ensemble technique according to their problem characteristics and their workflow. To do so, we revise the most renowned bagging and boosting algorithms and their software tools. These ensembles are described in detail within their variants and improvements available in the literature. Their online-available software tools are reviewed attending to the implemented versions and features. They are categorized according to their supported programming languages and computing paradigms. The performance of 14 different bagging and boosting based ensembles, including XGBoost, LightGBM and Random Forest, is empirically analyzed in terms of predictive capability and efficiency. This comparison is done under the same software environment with 76 different classification tasks. Their predictive capabilities are evaluated with a wide variety of scenarios, such as standard multi-class problems, scenarios with categorical features and big size data. The efficiency of these methods is analyzed with considerably large data-sets. Several practical perspectives and opportunities are also exposed for ensemble learning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
一杯完成签到,获得积分10
1秒前
lyjj023发布了新的文献求助30
1秒前
21完成签到,获得积分10
3秒前
3秒前
阿莫西林完成签到,获得积分10
5秒前
5秒前
6秒前
7秒前
9秒前
klp335完成签到,获得积分10
9秒前
x1发布了新的文献求助10
9秒前
10秒前
格子布发布了新的文献求助10
10秒前
郑绒绒完成签到 ,获得积分10
11秒前
yjchenf完成签到 ,获得积分10
12秒前
12秒前
顾矜应助王4采纳,获得10
13秒前
15秒前
ylc发布了新的文献求助10
16秒前
lyjj023发布了新的文献求助10
16秒前
幸福语儿发布了新的文献求助30
16秒前
畅快幻柏发布了新的文献求助20
17秒前
太阳完成签到,获得积分10
18秒前
21秒前
22秒前
22秒前
Akim应助格子布采纳,获得10
22秒前
深情安青应助怕黑月光采纳,获得10
23秒前
碘伏完成签到 ,获得积分10
23秒前
24秒前
12345678完成签到,获得积分10
24秒前
26秒前
畅快幻柏完成签到,获得积分20
28秒前
31秒前
32秒前
haikuotian应助畅快幻柏采纳,获得20
33秒前
深情安青应助派派采纳,获得10
33秒前
33秒前
英俊亦绿完成签到,获得积分10
34秒前
格子布发布了新的文献求助10
36秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141401
求助须知:如何正确求助?哪些是违规求助? 2792423
关于积分的说明 7802495
捐赠科研通 2448598
什么是DOI,文献DOI怎么找? 1302633
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237