Finite Sample Change Point Inference and Identification for High-Dimensional Mean Vectors

数学 库苏姆 估计员 样本量测定 统计 应用数学 协方差 统计假设检验
作者
Mengjia Yu,Xiaohui Chen
出处
期刊:Journal of The Royal Statistical Society Series B-statistical Methodology [Oxford University Press]
卷期号:83 (2): 247-270 被引量:26
标识
DOI:10.1111/rssb.12406
摘要

Cumulative sum (CUSUM) statistics are widely used in the change point inference and identification. For the problem of testing for existence of a change point in an independent sample generated from the mean-shift model, we introduce a Gaussian multiplier bootstrap to calibrate critical values of the CUSUM test statistics in high dimensions. The proposed bootstrap CUSUM test is fully data-dependent and it has strong theoretical guarantees under arbitrary dependence structures and mild moment conditions. Specifically, we show that with a boundary removal parameter the bootstrap CUSUM test enjoys the uniform validity in size under the null and it achieves the minimax separation rate under the sparse alternatives when the dimension $p$ can be larger than the sample size $n$. Once a change point is detected, we estimate the change point location by maximizing the $\ell^{\infty}$-norm of the generalized CUSUM statistics at two different weighting scales corresponding to covariance stationary and non-stationary CUSUM statistics. For both estimators, we derive their rates of convergence and show that dimension impacts the rates only through logarithmic factors, which implies that consistency of the CUSUM estimators is possible when $p$ is much larger than $n$. In the presence of multiple change points, we propose a principled bootstrap-assisted binary segmentation (BABS) algorithm to dynamically adjust the change point detection rule and recursively estimate their locations. We derive its rate of convergence under suitable signal separation and strength conditions. The results derived in this paper are non-asymptotic and we provide extensive simulation studies to assess the finite sample performance. The empirical evidence shows an encouraging agreement with our theoretical results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蔺凌完成签到 ,获得积分10
刚刚
Yjh完成签到,获得积分10
1秒前
ding应助糖醋可乐采纳,获得10
2秒前
ll完成签到 ,获得积分10
2秒前
3秒前
3秒前
阳生完成签到,获得积分10
3秒前
4秒前
谢慧发布了新的文献求助10
4秒前
Ava应助RosyBai采纳,获得10
6秒前
6秒前
JamesPei应助Rin333采纳,获得200
6秒前
呆呆鱼完成签到,获得积分10
7秒前
8秒前
姜余完成签到,获得积分10
8秒前
小董不懂发布了新的文献求助10
8秒前
龙飞凤舞完成签到,获得积分10
8秒前
坦率的秀发完成签到,获得积分10
8秒前
wildeager发布了新的文献求助10
10秒前
烟花应助Mayday采纳,获得10
10秒前
张RH完成签到 ,获得积分10
11秒前
11秒前
11秒前
艺心完成签到 ,获得积分10
12秒前
13秒前
莫言发布了新的文献求助20
13秒前
李华关注了科研通微信公众号
13秒前
14秒前
14秒前
小董不懂完成签到,获得积分10
15秒前
蔺凌关注了科研通微信公众号
16秒前
17秒前
樱丸小桃子完成签到,获得积分10
17秒前
科研小白发布了新的文献求助10
18秒前
19秒前
莫言完成签到,获得积分10
20秒前
Iiirds完成签到 ,获得积分10
20秒前
上官若男应助顺利的梦柏采纳,获得10
20秒前
白嫖论文发布了新的文献求助10
20秒前
21秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966399
求助须知:如何正确求助?哪些是违规求助? 3511837
关于积分的说明 11160190
捐赠科研通 3246481
什么是DOI,文献DOI怎么找? 1793425
邀请新用户注册赠送积分活动 874438
科研通“疑难数据库(出版商)”最低求助积分说明 804388