Finite Sample Change Point Inference and Identification for High-Dimensional Mean Vectors

数学 库苏姆 估计员 样本量测定 统计 应用数学 协方差 统计假设检验
作者
Mengjia Yu,Xiaohui Chen
出处
期刊:Journal of The Royal Statistical Society Series B-statistical Methodology [Wiley]
卷期号:83 (2): 247-270 被引量:26
标识
DOI:10.1111/rssb.12406
摘要

Cumulative sum (CUSUM) statistics are widely used in the change point inference and identification. For the problem of testing for existence of a change point in an independent sample generated from the mean-shift model, we introduce a Gaussian multiplier bootstrap to calibrate critical values of the CUSUM test statistics in high dimensions. The proposed bootstrap CUSUM test is fully data-dependent and it has strong theoretical guarantees under arbitrary dependence structures and mild moment conditions. Specifically, we show that with a boundary removal parameter the bootstrap CUSUM test enjoys the uniform validity in size under the null and it achieves the minimax separation rate under the sparse alternatives when the dimension $p$ can be larger than the sample size $n$. Once a change point is detected, we estimate the change point location by maximizing the $\ell^{\infty}$-norm of the generalized CUSUM statistics at two different weighting scales corresponding to covariance stationary and non-stationary CUSUM statistics. For both estimators, we derive their rates of convergence and show that dimension impacts the rates only through logarithmic factors, which implies that consistency of the CUSUM estimators is possible when $p$ is much larger than $n$. In the presence of multiple change points, we propose a principled bootstrap-assisted binary segmentation (BABS) algorithm to dynamically adjust the change point detection rule and recursively estimate their locations. We derive its rate of convergence under suitable signal separation and strength conditions. The results derived in this paper are non-asymptotic and we provide extensive simulation studies to assess the finite sample performance. The empirical evidence shows an encouraging agreement with our theoretical results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ww2018完成签到,获得积分10
1秒前
save完成签到,获得积分10
1秒前
2秒前
kkkkk关注了科研通微信公众号
2秒前
attilio驳回了Yziii应助
2秒前
zoe完成签到 ,获得积分10
2秒前
女神金发布了新的文献求助10
2秒前
4秒前
郝好月发布了新的文献求助10
4秒前
4秒前
5秒前
Lion完成签到,获得积分20
5秒前
5秒前
冬瓜熊完成签到,获得积分10
6秒前
浮一白完成签到,获得积分10
6秒前
我爱科研发布了新的文献求助10
7秒前
Bazinga完成签到,获得积分10
7秒前
刘忙完成签到,获得积分10
7秒前
迷人新竹完成签到,获得积分20
7秒前
就这样完成签到,获得积分10
7秒前
慕青应助初余采纳,获得10
7秒前
8秒前
宋祝福完成签到 ,获得积分10
9秒前
滴滴滴滴发布了新的文献求助10
9秒前
9秒前
9秒前
零零二完成签到 ,获得积分10
9秒前
一杯橙完成签到,获得积分20
10秒前
shen完成签到,获得积分10
10秒前
慕青应助文静的怜烟采纳,获得10
10秒前
双眸若星辰完成签到,获得积分20
10秒前
郝好月完成签到,获得积分10
10秒前
闪闪星星完成签到,获得积分10
10秒前
zxymn完成签到 ,获得积分10
10秒前
大大怪发布了新的文献求助10
11秒前
wanci应助静静采纳,获得10
11秒前
包容诗槐完成签到,获得积分10
12秒前
nicholaswk发布了新的文献求助10
12秒前
研友_qZAre8完成签到,获得积分10
12秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147102
求助须知:如何正确求助?哪些是违规求助? 2798398
关于积分的说明 7828848
捐赠科研通 2455058
什么是DOI,文献DOI怎么找? 1306576
科研通“疑难数据库(出版商)”最低求助积分说明 627831
版权声明 601565