亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Finite Sample Change Point Inference and Identification for High-Dimensional Mean Vectors

数学 库苏姆 估计员 样本量测定 统计 应用数学 协方差 统计假设检验
作者
Mengjia Yu,Xiaohui Chen
出处
期刊:Journal of The Royal Statistical Society Series B-statistical Methodology [Wiley]
卷期号:83 (2): 247-270 被引量:26
标识
DOI:10.1111/rssb.12406
摘要

Cumulative sum (CUSUM) statistics are widely used in the change point inference and identification. For the problem of testing for existence of a change point in an independent sample generated from the mean-shift model, we introduce a Gaussian multiplier bootstrap to calibrate critical values of the CUSUM test statistics in high dimensions. The proposed bootstrap CUSUM test is fully data-dependent and it has strong theoretical guarantees under arbitrary dependence structures and mild moment conditions. Specifically, we show that with a boundary removal parameter the bootstrap CUSUM test enjoys the uniform validity in size under the null and it achieves the minimax separation rate under the sparse alternatives when the dimension $p$ can be larger than the sample size $n$. Once a change point is detected, we estimate the change point location by maximizing the $\ell^{\infty}$-norm of the generalized CUSUM statistics at two different weighting scales corresponding to covariance stationary and non-stationary CUSUM statistics. For both estimators, we derive their rates of convergence and show that dimension impacts the rates only through logarithmic factors, which implies that consistency of the CUSUM estimators is possible when $p$ is much larger than $n$. In the presence of multiple change points, we propose a principled bootstrap-assisted binary segmentation (BABS) algorithm to dynamically adjust the change point detection rule and recursively estimate their locations. We derive its rate of convergence under suitable signal separation and strength conditions. The results derived in this paper are non-asymptotic and we provide extensive simulation studies to assess the finite sample performance. The empirical evidence shows an encouraging agreement with our theoretical results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
FashionBoy应助KSung采纳,获得10
12秒前
20秒前
天天快乐应助ceeray23采纳,获得20
21秒前
池雨发布了新的文献求助10
24秒前
光轮2000发布了新的文献求助10
25秒前
28秒前
new1完成签到,获得积分10
31秒前
KSung发布了新的文献求助10
33秒前
今后应助KSung采纳,获得10
1分钟前
1分钟前
KSung发布了新的文献求助10
1分钟前
1分钟前
袁建波完成签到,获得积分10
1分钟前
我是老大应助顺利的沛萍采纳,获得10
1分钟前
肾宝发布了新的文献求助10
1分钟前
田様应助肾宝采纳,获得10
1分钟前
丘比特应助KSung采纳,获得10
1分钟前
1分钟前
xxxxxxd发布了新的文献求助20
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
1分钟前
池雨发布了新的文献求助10
2分钟前
KSung发布了新的文献求助10
2分钟前
2分钟前
2分钟前
彭于晏应助KSung采纳,获得10
2分钟前
2分钟前
2分钟前
林志迎发布了新的文献求助10
2分钟前
2分钟前
KSung发布了新的文献求助10
2分钟前
我是老大应助胡小壳采纳,获得10
2分钟前
xxxxxxd完成签到,获得积分10
2分钟前
3分钟前
义气的水蓝应助狂野的白秋采纳,获得200
3分钟前
池雨发布了新的文献求助10
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498381
求助须知:如何正确求助?哪些是违规求助? 4595607
关于积分的说明 14449497
捐赠科研通 4528426
什么是DOI,文献DOI怎么找? 2481482
邀请新用户注册赠送积分活动 1465648
关于科研通互助平台的介绍 1438361