化学
灵丹妙药
无机化学
过渡金属
催化作用
有机化学
病理
替代医学
医学
作者
Bo Sheng,Xin Zhou,Zhun Shi,Zhaohui Wang,Yaoguang Guo,Xiaoyi Lou,Jianshe Liu
标识
DOI:10.1016/j.jhazmat.2019.121877
摘要
The interaction of reductive metal ions and peroxymonosulfate (PMS) is necessary for the generation of sulfate radials (SO4−), however, this process is greatly restrained by the sluggish reduction of high-valent metal ions. Here we report that commercially available reductive metal (Mo or W) powders are capable of unlocking this kinetic constraint. The reduction of Fe(III) to Fe(II), decomposition of PMS, and degradation/mineralization of 4-chlorophenol (4-CP) are all accelerated in the Mo/Fe2+/PMS process at a very low Fe2+/PMS ratio (Fe2+/PMS = 1/10). In such an accelerated system, common adverse effects of natural water constituents such as chloride and humic acid are largely mitigated. According to the fluorescence measurement and scavenging tests, sulfate and hydroxyl radicals dominate in Mo/Fe2+/PMS process. The addition of Mo or W is further confirmed to favor Cu2+/PMS process, but this is not the case for other metal ions (Mn2+, Ni2+, Ce3+ and Co2+). Reductive zero-valence and four-valence active sites (Mo0 and Mo4+; W0 and W4+) play key roles in overall redox reaction. Overall, our present work provides an alternative route for expediting redox cycling of transition metals in advanced oxidation processes, without useless consumption of PMS and increase of total organic carbon.
科研通智能强力驱动
Strongly Powered by AbleSci AI