Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries

学习迁移 锂(药物) 卷积神经网络 离子 深度学习 人工智能 计算机科学 集成学习 机器学习 人工神经网络
作者
Sheng Shen,Mohammadkazem Sadoughi,Meng Li,Zhengdao Wang,Chao Hu
出处
期刊:Applied Energy [Elsevier]
卷期号:260: 114296-114296 被引量:102
标识
DOI:10.1016/j.apenergy.2019.114296
摘要

Abstract It is often difficult for a machine learning model trained based on a small size of charge/discharge cycling data to produce satisfactory accuracy in the capacity estimation of lithium-ion (Li-ion) rechargeable batteries. However, in real-world applications, collecting long-term cycling data is a costly and time-consuming process. To overcome this difficulty, we propose a deep learning-based capacity estimation method that incorporates the concepts of transfer learning and ensemble learning. We target the applications where only a relatively small set of training data is available. Transfer learning is a knowledge learning method that leverages the knowledge learned from a source task to improve learning in a related but different target task. Ensemble learning can reduce the risk of choosing a learning algorithm with poor performance by combining prediction results from multiple learning algorithms. In this study, 10-year daily cycling data from eight implantable Li-ion cells is first used as the source dataset to pre-train eight deep convolutional neural network (DCNN) models. The learned parameters of the pre-trained DCNN models are then transferred from the source task to the target task, resulting in eight DCNN with transfer learning (DCNN-TL) models, respectively. These DCNN-TL models are then integrated to build an ensemble model called the DCNN with ensemble learning and transfer learning (DCNN-ETL). The effectiveness of the DCNN-ETL model is verified using a target dataset consisting of 20 commercial 18650 Li-ion cells, and the performance of the model on the target dataset is compared with that of five other data-driven methods including random forest regression, Gaussian process regression, DCNN, DCNN-TL, and DCNN-EL. The verification and comparison results demonstrate that the proposed DCNN-ETL method can produce a higher accuracy and robustness than these other data-driven methods in estimating the capacities of the Li-ion cells in the target task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Huobol完成签到,获得积分10
1秒前
1秒前
折耳Doc完成签到,获得积分10
2秒前
3秒前
调研昵称发布了新的文献求助10
3秒前
嗯qq发布了新的文献求助10
3秒前
汉堡包应助刘坦苇采纳,获得10
4秒前
周星星发布了新的文献求助10
5秒前
123发布了新的文献求助10
5秒前
一一应助橘络采纳,获得10
6秒前
6秒前
7秒前
万能图书馆应助nanfeng采纳,获得10
7秒前
我要住giao楼完成签到 ,获得积分10
7秒前
薛凡发布了新的文献求助10
7秒前
路过的骑士完成签到 ,获得积分10
9秒前
山橘月发布了新的文献求助10
9秒前
9秒前
刘坦苇发布了新的文献求助10
10秒前
10秒前
传奇3应助李小麻采纳,获得10
11秒前
Singularity应助wyxdd采纳,获得10
11秒前
小喻发布了新的文献求助10
12秒前
12秒前
桐桐应助王立伟采纳,获得10
13秒前
AAAAA完成签到 ,获得积分10
13秒前
13秒前
13秒前
15秒前
15秒前
17秒前
简单的八宝粥应助ZHUHONGYAO采纳,获得10
17秒前
刘坦苇发布了新的文献求助10
18秒前
20秒前
21秒前
21秒前
22秒前
paul发布了新的文献求助20
22秒前
永吉发布了新的文献求助30
23秒前
li完成签到,获得积分10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459437
求助须知:如何正确求助?哪些是违规求助? 3053861
关于积分的说明 9039026
捐赠科研通 2743219
什么是DOI,文献DOI怎么找? 1504698
科研通“疑难数据库(出版商)”最低求助积分说明 695389
邀请新用户注册赠送积分活动 694664