Probabilistic Reliability Analysis of Wind Turbines

风力发电 涡轮机 海上风力发电 可再生能源 工程类 海洋工程 环境科学 可靠性工程 机械工程 电气工程
作者
Usman Zafar
摘要

Renewable energy use is on the rise and these alternative resources of energy can help combat with the climate change. Around 80% of the world's electricity comes from coal and petroleum however, the renewables are the fastest growing source of energy in the world. Solar, wind, hydro, geothermal and biogas are the most common forms of renewable energy. Among them, wind energy is emerging as a reliable and large-scaled source of power production. The recent research and confidence in the performance has led to the construction of more and bigger wind turbines around the world. As wind turbines are getting bigger, a concern regarding their safety is also in discussion. Wind turbines are expensive machinery to construct and the enormous capital investment is one of the main reasons, why many countries are unable to adopt to the wind energy. Generally, a reliable wind turbine will result in better performance and assist in minimizing the cost of operation. If a wind turbine fails, it's a loss of investment and can be harmful for the surrounding habitat. This thesis aims towards estimating the reliability of an offshore wind turbine. A model of Jacket type offshore wind turbine is prepared by using finite element software package ABAQUS and is compared with the structural failure criteria of the wind turbine tower. UQLab, which is a general uncertainty quantification framework developed at ETH Zurich, is used for the reliability analysis. Several probabilistic methods are included in the framework of UQLab, which include Monte Carlo, First Order Reliability Analysis and Adaptive Kriging Monte Carlo simulation. This reliability study is performed only for the structural failure of the wind turbine but it can be extended to many other forms of failures e.g. reliability for power production, or reliability for different component failures etc. It's a useful tool that can be utilized to estimate the reliability of future wind turbines, that could result in more safer and better performance of wind turbines.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁画板关注了科研通微信公众号
刚刚
1秒前
xlong应助学不懂采纳,获得10
2秒前
大模型应助晨屿采纳,获得10
2秒前
顾矜应助梧悠采纳,获得10
3秒前
3秒前
Re完成签到,获得积分10
6秒前
7秒前
呼唤发布了新的文献求助10
7秒前
FashionBoy应助yongen采纳,获得10
7秒前
椰子应助秀丽的咖啡采纳,获得10
8秒前
star完成签到,获得积分10
8秒前
9秒前
10秒前
10秒前
jin完成签到 ,获得积分10
13秒前
13秒前
pluto应助科研通管家采纳,获得10
14秒前
汉堡包应助科研通管家采纳,获得10
14秒前
顾矜应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
已秃应助科研通管家采纳,获得30
14秒前
劲秉应助科研通管家采纳,获得10
14秒前
已秃应助科研通管家采纳,获得30
14秒前
劲秉应助科研通管家采纳,获得10
14秒前
666发布了新的文献求助10
15秒前
16秒前
star发布了新的文献求助10
16秒前
jin关注了科研通微信公众号
17秒前
17秒前
Owen应助冷艳宛白采纳,获得10
17秒前
17秒前
wanci应助VANGOGH采纳,获得10
17秒前
忧郁画板发布了新的文献求助10
19秒前
梧悠完成签到,获得积分10
19秒前
fanmo完成签到 ,获得积分0
20秒前
21秒前
领导范儿应助李老头采纳,获得10
22秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3222475
求助须知:如何正确求助?哪些是违规求助? 2871125
关于积分的说明 8173855
捐赠科研通 2538042
什么是DOI,文献DOI怎么找? 1370245
科研通“疑难数据库(出版商)”最低求助积分说明 645736
邀请新用户注册赠送积分活动 619535