工作流程
人工智能
自动化
计算机科学
血糖性
机器学习
控制(管理)
数据科学
医学
工程类
糖尿病
机械工程
数据库
内分泌学
作者
Matthias Görges,J. Mark Ansermino
标识
DOI:10.1097/aco.0000000000000845
摘要
Purpose of review Acute care technologies, including novel monitoring devices, big data, increased computing capabilities, machine-learning algorithms and automation, are converging. This enables the application of augmented intelligence for improved outcome predictions, clinical decision-making, and offers unprecedented opportunities to improve patient outcomes, reduce costs, and improve clinician workflow. This article briefly explores recent work in the areas of automation, artificial intelligence and outcome prediction models in pediatric anesthesia and pediatric critical care. Recent findings Recent years have yielded little published research into pediatric physiological closed loop control (a type of automation) beyond studies focused on glycemic control for type 1 diabetes. However, there has been a greater range of research in augmented decision-making, leveraging artificial intelligence and machine-learning techniques, in particular, for pediatric ICU outcome prediction. Summary Most studies focusing on artificial intelligence demonstrate good performance on prediction or classification, whether they use traditional statistical tools or novel machine-learning approaches. Yet the challenges of implementation, user acceptance, ethics and regulation cannot be underestimated. Areas in which there is easy access to routinely labeled data and robust outcomes, such as those collected through national networks and quality improvement programs, are likely to be at the forefront of the adoption of these advances.
科研通智能强力驱动
Strongly Powered by AbleSci AI