亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graph Signal Processing for Directed Graphs Based on the Hermitian Laplacian

电压图 拉普拉斯矩阵 空图形 计算机科学 折线图 图形 理论计算机科学 数学 离散数学
作者
Satoshi Furutani,Toshiki Shibahara,Mitsuaki Akiyama,Kunio Hato,Masaki Aida
出处
期刊:Lecture Notes in Computer Science 卷期号:: 447-463 被引量:32
标识
DOI:10.1007/978-3-030-46150-8_27
摘要

Graph signal processing is a useful tool for representing, analyzing, and processing the signal lying on a graph, and has attracted attention in several fields including data mining and machine learning. A key to construct the graph signal processing is the graph Fourier transform, which is defined by using eigenvectors of the graph Laplacian of an undirected graph. The orthonormality of eigenvectors gives the graph Fourier transform algebraically desirable properties, and thus the graph signal processing for undirected graphs has been well developed. However, since eigenvectors of the graph Laplacian of a directed graph are generally not orthonormal, it is difficult to simply extend the graph signal processing to directed graphs. In this paper, we present a general framework for extending the graph signal processing to directed graphs. To this end, we introduce the Hermitian Laplacian which is a complex matrix obtained from an extension of the graph Laplacian. The Hermitian Laplacian is defined so as to preserve the edge directionality and Hermitian property and enables the graph signal processing to be straightforwardly extended to directed graphs. Furthermore, the Hermitian Laplacian guarantees some desirable properties, such as non-negative real eigenvalues and the unitarity of the Fourier transform. Finally, experimental results for representation learning and signal denoising of/on directed graphs show the effectiveness of our framework.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助小刘小刘采纳,获得80
7秒前
33秒前
36秒前
Yuanyuan发布了新的文献求助10
39秒前
42秒前
烟花应助科研通管家采纳,获得10
42秒前
JamesPei应助77采纳,获得10
45秒前
阿K完成签到,获得积分10
46秒前
sophy发布了新的文献求助20
47秒前
53秒前
默己完成签到 ,获得积分10
58秒前
77发布了新的文献求助10
59秒前
害羞的高跟鞋完成签到,获得积分20
1分钟前
1分钟前
Yuanyuan发布了新的文献求助10
1分钟前
77完成签到,获得积分10
1分钟前
2分钟前
奋斗的小研完成签到,获得积分10
2分钟前
里昂义务发布了新的文献求助30
2分钟前
2分钟前
Yuanyuan发布了新的文献求助10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
科研通AI6.1应助毛毛采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
老石完成签到 ,获得积分10
3分钟前
3分钟前
Yuanyuan发布了新的文献求助10
3分钟前
3分钟前
朝雪关注了科研通微信公众号
4分钟前
Yuanyuan发布了新的文献求助10
4分钟前
朝雪完成签到,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
arniu2008完成签到,获得积分20
5分钟前
科研通AI6.1应助曾经问雁采纳,获得30
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788771
求助须知:如何正确求助?哪些是违规求助? 5711930
关于积分的说明 15473908
捐赠科研通 4916776
什么是DOI,文献DOI怎么找? 2646575
邀请新用户注册赠送积分活动 1594240
关于科研通互助平台的介绍 1548666