Using Deep Learning in Infrared Images to Enable Human Gesture Recognition for Autonomous Vehicles

计算机科学 人工智能 手势 计算机视觉 手势识别 模式识别(心理学) 特征(语言学) 块(置换群论) 分割 卷积神经网络 语言学 哲学 几何学 数学
作者
Keke Geng,Guodong Yin
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:8: 88227-88240 被引量:40
标识
DOI:10.1109/access.2020.2990636
摘要

The realization of a novel human gesture recognition algorithm is essential to enable the effective collision avoidance of autonomous vehicles. Compared to visible spectrum cameras, the use of infrared imaging can enable more robust human gesture recognition in a complex environment. However, gesture recognition in infrared images has not been extensively investigated. In this work, we propose a model to detect human gestures, based on the improved YOLO-V3 network involving a saliency map as the second input channel to enhance the reuse of features and improve the network performance. Three DenseNet blocks are added before the residual components in the YOLO-V3 network to enhance the convolutional feature propagation. The saliency maps are obtained by multiscale superpixel segmentation, superpixel block clustering and cellular automata saliency detection. The obtained five scale saliency maps are fused using a Bayesian based fusion algorithm, and the final saliency image is generated. The infrared images composed of 4 main gesture classes are collected, each of which contains several approximated gestures in morphological terms. The training and testing datasets are generated, including original and augmented infrared images with a resolution of 640 × 480. The experimental results show that the proposed approach can enable real time human gesture detection for autonomous vehicles, with an average detection accuracy of 86.2%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
雷红发布了新的文献求助10
2秒前
teni发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
xiaoyang完成签到,获得积分10
5秒前
猪猪hero发布了新的文献求助10
7秒前
han完成签到,获得积分10
8秒前
9秒前
Song完成签到,获得积分10
9秒前
10秒前
王卫璐发布了新的文献求助10
10秒前
12秒前
12秒前
哈基米德应助zhonghy0219采纳,获得20
13秒前
TYolo发布了新的文献求助20
13秒前
14秒前
15秒前
zzzddd发布了新的文献求助10
16秒前
17秒前
柚子发布了新的文献求助10
17秒前
18秒前
18秒前
19秒前
19秒前
所所应助CYT采纳,获得10
20秒前
un发布了新的文献求助10
20秒前
浮游应助huanghuang采纳,获得10
21秒前
张琴英发布了新的文献求助10
21秒前
zhao发布了新的文献求助10
21秒前
21秒前
虚幻的安容完成签到,获得积分20
22秒前
Ruoru发布了新的文献求助10
22秒前
24秒前
K先生发布了新的文献求助10
24秒前
24秒前
田様应助世界尽头采纳,获得10
27秒前
唯陌zero应助Song采纳,获得10
27秒前
完美世界应助zx采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5196755
求助须知:如何正确求助?哪些是违规求助? 4378345
关于积分的说明 13636034
捐赠科研通 4233859
什么是DOI,文献DOI怎么找? 2322459
邀请新用户注册赠送积分活动 1320610
关于科研通互助平台的介绍 1271010