亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An adaptive clustering-based evolutionary algorithm for many-objective optimization problems

聚类分析 进化算法 数学优化 趋同(经济学) 计算机科学 数学 选择(遗传算法) 最优化问题 人口 帕累托原理 算法 人工智能 经济增长 社会学 人口学 经济
作者
Songbai Liu,Qiyuan Yu,Qiuzhen Lin,Kay Chen Tan
出处
期刊:Information Sciences [Elsevier]
卷期号:537: 261-283 被引量:34
标识
DOI:10.1016/j.ins.2020.03.104
摘要

This paper proposes an adaptive clustering-based evolutionary algorithm for many-objective optimization problems (MaOPs), called MaOEA/AC. In this algorithm, an adaptive clustering strategy (ACS) is first introduced to divide the population into multiple clusters, which can properly fit various Pareto fronts (PFs) of the target MaOPs. Then, the environmental selection of MaOEA/AC is designed based on these clusters to collect the solutions with balanceable convergence and diversity. To be more detail, the similarity between solutions in ACS is appropriately measured by computing the Euclidean distance between their projections on an adaptive unit hyper-surface, whose curving rate is controlled by a parameter p. A simple yet effective estimation method is proposed to get a suitable value of p based on the distribution of the current non-dominated solution set, so that the estimated unit hyper-surface can roughly reflect the characteristics of PFs in the target MaOPs. The effectiveness of MaOEA/AC is validated by numerous experimental studies on solving test MaOPs with various PFs, which have the characteristics with convex, concave, inverted, disconnected, degenerated, and other mixed or irregular PFs. The experiments also show that MaOEA/AC has the superior performance over several recent many-objective evolutionary algorithms, when solving most of these test MaOPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助yff采纳,获得10
3秒前
sofardli发布了新的文献求助10
6秒前
科研通AI2S应助NCL采纳,获得10
12秒前
从容芮应助科研通管家采纳,获得60
19秒前
招水若离完成签到,获得积分10
25秒前
sofardli完成签到,获得积分10
53秒前
55秒前
wtsow完成签到,获得积分0
1分钟前
Shandongdaxiu完成签到 ,获得积分10
1分钟前
依然灬聆听完成签到,获得积分10
2分钟前
杨明明完成签到,获得积分20
2分钟前
小杜发布了新的文献求助10
4分钟前
jason完成签到 ,获得积分10
4分钟前
在水一方应助小杜采纳,获得10
5分钟前
5分钟前
爱静静举报小趴蔡求助涉嫌违规
6分钟前
李剑鸿发布了新的文献求助30
7分钟前
李剑鸿发布了新的文献求助30
7分钟前
Hello应助Grayball采纳,获得30
7分钟前
7分钟前
8分钟前
Grayball发布了新的文献求助30
8分钟前
8分钟前
Fox完成签到 ,获得积分10
9分钟前
Magali发布了新的文献求助10
9分钟前
Legoxpy完成签到,获得积分20
9分钟前
鬼见愁应助科研通管家采纳,获得20
10分钟前
11分钟前
爱静静完成签到,获得积分0
12分钟前
年鱼精完成签到 ,获得积分10
13分钟前
远方关注了科研通微信公众号
13分钟前
13分钟前
Magali发布了新的文献求助30
13分钟前
13分钟前
15分钟前
耶嘿发布了新的文献求助20
15分钟前
Raunio完成签到,获得积分10
15分钟前
李剑鸿发布了新的文献求助500
16分钟前
和谐板栗完成签到 ,获得积分10
16分钟前
16分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146739
求助须知:如何正确求助?哪些是违规求助? 2798045
关于积分的说明 7826565
捐赠科研通 2454548
什么是DOI,文献DOI怎么找? 1306376
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527