Liquid flow and control without solid walls

流体学 微流控 材料科学 表面张力 机械 下降(电信) 磁流体 流体力学 纳米流体学 流量(数学) 纳米技术 磁场 机械工程 电气工程 物理 热力学 工程类 量子力学
作者
Peter Dunne,Takuji Adachi,Arvind Arun Dev,Alessandro Sorrenti,Lucas Giacchetti,Anne Bonnin,Catherine Bourdon,Pierre Mangin,J. M. D. Coey,Bernard Doudin,Thomas M. Hermans
出处
期刊:Nature [Springer Nature]
卷期号:581 (7806): 58-62 被引量:103
标识
DOI:10.1038/s41586-020-2254-4
摘要

When miniaturizing fluidic circuitry, the solid walls of the fluid channels become increasingly important1 because they limit the flow rates achievable for a given pressure drop, and they are prone to fouling2. Approaches for reducing the wall interactions include hydrophobic coatings3, liquid-infused porous surfaces4–6, nanoparticle surfactant jamming7, changes to surface electronic structure8, electrowetting9,10, surface tension pinning11,12 and use of atomically flat channels13. A better solution may be to avoid the solid walls altogether. Droplet microfluidics and sheath flow achieve this but require continuous flow of the central liquid and the surrounding liquid1,14. Here we demonstrate an approach in which aqueous liquid channels are surrounded by an immiscible magnetic liquid, both of which are stabilized by a quadrupolar magnetic field. This creates self-healing, non-clogging, anti-fouling and near-frictionless liquid-in-liquid fluidic channels. Manipulation of the field provides flow control, such as valving, splitting, merging and pumping. The latter is achieved by moving permanent magnets that have no physical contact with the liquid channel. We show that this magnetostaltic pumping method can be used to transport whole human blood with very little damage due to shear forces. Haemolysis (rupture of blood cells) is reduced by an order of magnitude compared with traditional peristaltic pumping, in which blood is mechanically squeezed through a plastic tube. Our liquid-in-liquid approach provides new ways to transport delicate liquids, particularly when scaling channels down to the micrometre scale, with no need for high pressures, and could also be used for microfluidic circuitry. Wall-free liquid channels surrounded by an immiscible magnetic liquid can be used to create liquid circuitry or to transport human blood without damaging the blood cells by moving permanent magnets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助自然毛巾采纳,获得10
1秒前
2秒前
2秒前
丽天完成签到,获得积分10
2秒前
2秒前
左惋庭完成签到,获得积分10
3秒前
3秒前
星辰大海应助朱玉采纳,获得10
4秒前
科研通AI2S应助月月鸟采纳,获得10
5秒前
6秒前
幽默的欢欢完成签到,获得积分10
6秒前
科研通AI2S应助夯大力采纳,获得10
7秒前
mjj发布了新的文献求助10
7秒前
左惋庭发布了新的文献求助10
7秒前
开心小刺猬完成签到,获得积分10
13秒前
竹落笙笙完成签到,获得积分10
13秒前
16秒前
17秒前
张磊发布了新的文献求助10
17秒前
在水一方应助bai采纳,获得10
18秒前
善良的蜡烛关注了科研通微信公众号
19秒前
20秒前
21秒前
21秒前
今后应助Mewo采纳,获得10
22秒前
书芹发布了新的文献求助10
22秒前
荀代灵发布了新的文献求助30
22秒前
22秒前
小二郎应助毓毓采纳,获得10
23秒前
25秒前
陶醉发布了新的文献求助10
25秒前
林木森完成签到,获得积分10
26秒前
ZZZ发布了新的文献求助10
26秒前
SciGPT应助科研通管家采纳,获得10
27秒前
英姑应助科研通管家采纳,获得10
27秒前
在水一方应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
烟花应助科研通管家采纳,获得10
27秒前
27秒前
Maestro_S应助科研通管家采纳,获得10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309624
求助须知:如何正确求助?哪些是违规求助? 2942923
关于积分的说明 8511679
捐赠科研通 2618018
什么是DOI,文献DOI怎么找? 1430760
科研通“疑难数据库(出版商)”最低求助积分说明 664249
邀请新用户注册赠送积分活动 649437