[Potential distribution of Panax ginseng and its predicted responses to climate change.]

气候变化 拟合优度 栖息地 环境科学 航程(航空) 人参 物种分布 自然地理学 分布(数学) 地理 生态学 统计 数学 生物 数学分析 病理 复合材料 医学 材料科学 替代医学
作者
Ze Fang Zhao,Hai Yan Wei,Yan Guo,Wei Gu
出处
期刊:PubMed 卷期号:27 (11): 3607-3615 被引量:10
标识
DOI:10.13287/j.1001-9332.201611.040
摘要

This study utilized Panax ginseng as the research object. Based on BioMod2 platform, with species presence data and 22 climatic variables, the potential geographic distribution of P. ginseng under the current conditions in northeast China was simulated with ten species distribution model. And then with the receiver-operating characteristic curve (ROC) as weights, we build an ensemble model, which integrated the results of 10 models, using the ensemble model, the future distributions of P. ginseng were also projected for the periods 2050s and 2070s under the climate change scenarios of RCP 8.5, RCP 6, RCP 4.5 and RCP 2.6 emission scenarios described in the Special Report on Emissions Scenarios (SRES) of IPCC (Intergovernmental Panel on Climate Change). The results showed that for the entire region of study area, under the present climatic conditions, 10.4% of the areas were identified as suitable habitats, which were mainly located in northeast Changbai Mountains area and the southeastern region of the Xiaoxing'an Mountains. The model simulations indicated that the suitable habitats would have a relatively significant change under the different climate change scenarios, and generally the range of suitable habitats would be a certain degree of decrease. Meanwhile, the goodness-of-fit, predicted ranges, and weights of explanatory variables was various for each model. And according to the goodness-of-fit, Maxent had the highest model performance, and GAM, RF and ANN were followed, while SRE had the lowest prediction accuracy. In this study we established an ensemble model, which could improve the accuracy of the existing species distribution models, and optimization of species distribution prediction results.本文以人参为研究对象,基于人参分布点位数据和22个气候环境因子数据,运用BioMod2平台10个物种分布模型对当前我国东北地区人参潜在生境分布进行预测.以受试者工作特征曲线(ROC)为权重集成10个模型的模拟结果,构建组合模型,并基于该模型预测了IPCC 第五次评估报告中RCP 8.5、RCP 6.0、RCP 4.5和RCP 2.6等4种排放情景下21世纪50和70年代人参潜在分布范围.结果表明: 在基准气候条件下,人参适宜生境面积占研究区总面积的10.4%,此类地区主要分布于研究区东北部长白山地区以及小兴安岭东南部区域的森林地带.在未来不同的排放情景下研究区人参的适宜生境变化显著,总体上分布范围将有一定程度的缩小.同时参与建模的10种模型在统计学精度、预测结果以及变量权重上都有差异.模型精度计算结果表明,MAXENT模拟效果最好,GAM、RF和ANN次之,SRE模拟精度最低.本文构建的组合模型在一定程度上提高了现有物种分布模型的预测精度,从而使模拟效果更优.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
达不溜完成签到,获得积分10
刚刚
ONER完成签到,获得积分10
1秒前
科研通AI6应助聪明的雨南采纳,获得10
3秒前
3秒前
4秒前
wdb完成签到,获得积分10
4秒前
4秒前
整齐的未来完成签到 ,获得积分10
5秒前
情怀应助坚强莺采纳,获得10
7秒前
醋溜爆肚儿完成签到,获得积分10
7秒前
浮游应助Nightfall采纳,获得10
8秒前
9秒前
Amorphous发布了新的文献求助10
9秒前
10秒前
佛了欢喜发布了新的文献求助10
10秒前
瓜子壳发布了新的文献求助10
10秒前
天真凡灵发布了新的文献求助10
11秒前
SciGPT应助sfliufighting采纳,获得10
11秒前
在水一方应助sw采纳,获得10
12秒前
佟鹭其完成签到 ,获得积分10
13秒前
科研通AI5应助背后的鞋垫采纳,获得10
14秒前
酷波er应助ccc采纳,获得10
14秒前
思源应助飞快的河马采纳,获得10
15秒前
Xavier完成签到,获得积分10
15秒前
科研通AI6应助llynvxia采纳,获得10
15秒前
15秒前
16秒前
16秒前
16秒前
17秒前
科研通AI5应助HoraceHou采纳,获得10
17秒前
17秒前
kaworul发布了新的文献求助10
17秒前
leaolf应助科研通管家采纳,获得10
18秒前
SciGPT应助科研通管家采纳,获得10
19秒前
leaolf应助科研通管家采纳,获得10
19秒前
wanci应助科研通管家采纳,获得10
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
19秒前
Akim应助科研通管家采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
Founding Fathers The Shaping of America 500
Research Handbook on Law and Political Economy Second Edition 398
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4558330
求助须知:如何正确求助?哪些是违规求助? 3985350
关于积分的说明 12338439
捐赠科研通 3655702
什么是DOI,文献DOI怎么找? 2013951
邀请新用户注册赠送积分活动 1048833
科研通“疑难数据库(出版商)”最低求助积分说明 937181