A Framework for Analyzing Influencer Marketing in Social Networks: Selection and Scheduling of Influencers

影响力营销 时间范围 社会化媒体 计算机科学 实证研究 病毒式营销 调度(生产过程) 业务 营销 数学优化 市场营销管理 数学 关系营销 万维网 统计
作者
Rakesh R. Mallipeddi,Subodha Kumar,Chelliah Sriskandarajah,Yunxia Zhu
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (1): 75-104 被引量:68
标识
DOI:10.1287/mnsc.2020.3899
摘要

Explosive growth in the number of users on various social media platforms has transformed the way firms strategize their marketing activities. To take advantage of the vast size of social networks, firms have now turned their attention to influencer marketing wherein they employ independent influencers to promote their products on social media platforms. Despite the recent growth in influencer marketing, the problem of network seeding (i.e., identification of influencers to optimally post a firm’s message or advertisement) neither has been rigorously studied in the academic literature nor has been carefully addressed in practice. We develop a data-driven optimization framework to help a firm successfully conduct (i) short-horizon and (ii) long-horizon influencer marketing campaigns, for which two models are developed, respectively, to maximize the firm’s benefit. The models are based on the interactions with marketers, observation of firms’ message placements on social media, and model parameters estimated via empirical analysis performed on data from Twitter. Our empirical analysis discovers the effects of collective influence of multiple influencers and finds two important parameters to be included in the models, namely, multiple exposure effect and forgetting effect. For the short-horizon campaign, we develop an optimization model to select influencers and present structural properties for the model. Using these properties, we develop a mathematical programming based polynomial time procedure to provide near-optimal solutions. For the long-horizon problem, we develop an efficient solution procedure to simultaneously select influencers and schedule their message postings over a planning horizon. We demonstrate the superiority of our solution strategies for both short- and long-horizon problems against multiple benchmark methods used in practice. Finally, we present several managerially relevant insights for firms in the influencer marketing context. This paper was accepted by J. George Shanthikumar, big data analytics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Hugo完成签到,获得积分10
1秒前
街角哭泣发布了新的文献求助10
1秒前
wanci应助Zenobia采纳,获得10
2秒前
3秒前
小雨点完成签到 ,获得积分10
4秒前
金滢发布了新的文献求助10
4秒前
4秒前
田様应助Yhcir采纳,获得10
4秒前
JamesPei应助称心嫣娆采纳,获得10
5秒前
6秒前
刘师傅发布了新的文献求助10
6秒前
华仔应助快乐再出发采纳,获得30
6秒前
tiger一tiaotiao完成签到,获得积分10
7秒前
镜月完成签到 ,获得积分10
7秒前
在水一方应助sober采纳,获得10
8秒前
yangderder发布了新的文献求助10
8秒前
1L发布了新的文献求助10
8秒前
去看海嘛应助wille采纳,获得10
9秒前
9秒前
复杂的兔子完成签到,获得积分10
10秒前
充电宝应助长vefvj采纳,获得10
12秒前
13秒前
13秒前
qll完成签到,获得积分10
14秒前
Cynthia完成签到,获得积分10
14秒前
隐形盼海完成签到 ,获得积分10
15秒前
zhang完成签到 ,获得积分10
15秒前
干净的时光应助1L采纳,获得10
15秒前
高壳盐发布了新的文献求助10
15秒前
科研通AI2S应助孝顺的碧琴采纳,获得10
15秒前
zfy发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
二七完成签到,获得积分10
18秒前
askljfhdoal发布了新的文献求助10
18秒前
海盐气泡水完成签到,获得积分10
18秒前
wsg完成签到,获得积分10
19秒前
菠萝披萨完成签到,获得积分10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151673
求助须知:如何正确求助?哪些是违规求助? 2803099
关于积分的说明 7851899
捐赠科研通 2460474
什么是DOI,文献DOI怎么找? 1309813
科研通“疑难数据库(出版商)”最低求助积分说明 629061
版权声明 601760