Deep Learning-Based Gleason Grading of Prostate Cancer From Histopathology Images—Role of Multiscale Decision Aggregation and Data Augmentation

组织病理学 卷积神经网络 前列腺癌 分级(工程) 模式识别(心理学) 数字化病理学 深度学习 人工智能 医学 计算机科学 机器学习 人工神经网络 癌症 病理 内科学 土木工程 工程类
作者
Davood Karimi,Guy Nir,Ladan Fazli,Peter C. Black,Larry Goldenberg,Septimiu E. Salcudean
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (5): 1413-1426 被引量:119
标识
DOI:10.1109/jbhi.2019.2944643
摘要

Visual inspection of histopathology images of stained biopsy tissue by expert pathologists is the standard method for grading of prostate cancer (PCa). However, this process is time-consuming and subject to high inter-observer variability. Machine learning-based methods have the potential to improve efficient throughput of large volumes of slides while decreasing variability, but they are not easy to develop because they require substantial amounts of labeled training data. In this paper, we propose a deep learning-based classification technique and data augmentation methods for accurate grading of PCa in histopathology images in the presence of limited data. Our method combines the predictions of three separate convolutional neural networks (CNNs) that work with different patch sizes. This enables our method to take advantage of the greater amount of contextual information in larger patches as well as greater quantity of smaller patches in the labeled training data. The predictions produced by the three CNNs are combined using a logistic regression model, which is trained separately after the CNN training. To effectively train our models, we propose new data augmentation methods and empirically study their effects on the classification accuracy. The proposed method achieves an accuracy of 92% in classifying cancerous patches versus benign patches and an accuracy of 86% in classifying low-grade (i.e., Gleason grade 3) from high-grade (i.e., Gleason grades 4 and 5) patches. The agreement level of our automatic grading method with expert pathologists is within the range of agreement between pathologists. Our experiments indicate that data augmentation is necessary for achieving expert-level performance with deep learning-based methods. A combination of image-space augmentation and feature-space augmentation leads to the best results. Our study shows that well-designed and properly trained deep learning models can achieve PCa Gleason grading accuracy that is comparable to an expert pathologist.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
清爽凝荷完成签到,获得积分10
刚刚
科研通AI2S应助aixuexixiao采纳,获得10
1秒前
2秒前
cg完成签到,获得积分10
2秒前
蜂蜜不是糖完成签到 ,获得积分10
2秒前
852应助生动的代芙采纳,获得10
3秒前
3秒前
爆米花应助合适面包采纳,获得10
4秒前
5秒前
蓝从发布了新的文献求助10
5秒前
5秒前
oceanao应助L_1采纳,获得10
5秒前
桐桐应助大聪明采纳,获得10
6秒前
6秒前
吱哦周完成签到,获得积分20
6秒前
Cynthia发布了新的文献求助200
6秒前
qqq完成签到,获得积分10
7秒前
8秒前
王计恩发布了新的文献求助10
8秒前
酷酷酷完成签到,获得积分10
9秒前
Linda完成签到,获得积分10
9秒前
9秒前
研友_VZG7GZ应助活泼的背包采纳,获得10
9秒前
安详的雨兰完成签到 ,获得积分10
10秒前
10秒前
斯文败类应助iuv采纳,获得10
11秒前
11秒前
乐乐应助安陌煜采纳,获得10
12秒前
12秒前
Yy发布了新的文献求助10
12秒前
冯11发布了新的文献求助10
12秒前
猫不吃狗粮完成签到,获得积分10
12秒前
静推氯化钾完成签到,获得积分10
13秒前
遥远的尧应助qqq采纳,获得10
13秒前
13秒前
化工兔举报lkk求助涉嫌违规
14秒前
蓝从完成签到,获得积分10
14秒前
灵零发布了新的文献求助10
14秒前
15秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3160242
求助须知:如何正确求助?哪些是违规求助? 2811282
关于积分的说明 7891712
捐赠科研通 2470390
什么是DOI,文献DOI怎么找? 1315472
科研通“疑难数据库(出版商)”最低求助积分说明 630850
版权声明 602038