PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data

聚类分析 组学 自编码 计算机科学 降维 人工智能 数据挖掘 特征(语言学) 高维数据聚类 机器学习 模式识别(心理学) 生物信息学 计算生物学 生物 深度学习 哲学 语言学
作者
Amina Lemsara,Salima Ouadfel,Holger Fröhlich
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:21 (1) 被引量:39
标识
DOI:10.1186/s12859-020-3465-2
摘要

Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources.We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters.Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
自信的书双完成签到,获得积分10
1秒前
尔信完成签到 ,获得积分10
2秒前
2秒前
2秒前
2秒前
三七四十三完成签到,获得积分10
2秒前
3秒前
pluto应助三分采纳,获得10
3秒前
第三完成签到,获得积分10
3秒前
在水一方应助sunzhuxi采纳,获得10
3秒前
DQ发布了新的文献求助10
3秒前
传统的盼波完成签到,获得积分10
3秒前
3秒前
华仔应助凯云采纳,获得30
4秒前
陈帆发布了新的文献求助10
4秒前
4秒前
李健应助哎哟喂采纳,获得10
5秒前
鲤鱼越越完成签到 ,获得积分10
5秒前
刷完牙吃东西完成签到,获得积分10
5秒前
Maple完成签到,获得积分10
5秒前
6秒前
星期日发布了新的文献求助10
6秒前
虚幻心锁完成签到,获得积分10
6秒前
6秒前
6秒前
星辰大海应助wali采纳,获得10
6秒前
Zzy发布了新的文献求助10
6秒前
彪壮的绮烟完成签到,获得积分10
7秒前
小华发布了新的文献求助10
7秒前
tidongzhiwu发布了新的文献求助10
7秒前
平淡的画板完成签到 ,获得积分10
7秒前
Akim应助科研通管家采纳,获得10
7秒前
pluto应助科研通管家采纳,获得10
7秒前
FashionBoy应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
8秒前
脑洞疼应助科研通管家采纳,获得10
8秒前
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
8秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406