PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data

聚类分析 组学 自编码 计算机科学 降维 人工智能 数据挖掘 特征(语言学) 高维数据聚类 机器学习 模式识别(心理学) 生物信息学 计算生物学 生物 深度学习 哲学 语言学
作者
Amina Lemsara,Salima Ouadfel,Holger Fröhlich
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:21 (1) 被引量:39
标识
DOI:10.1186/s12859-020-3465-2
摘要

Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources.We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters.Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
玩命的问雁完成签到 ,获得积分10
刚刚
猪猪hero发布了新的文献求助10
1秒前
1秒前
4秒前
4秒前
5秒前
5秒前
科研通AI2S应助NPC采纳,获得30
6秒前
shancai发布了新的文献求助10
6秒前
无花果应助小梁要加油采纳,获得10
7秒前
猪猪hero发布了新的文献求助10
8秒前
deer完成签到,获得积分10
8秒前
8秒前
太阳花发布了新的文献求助10
9秒前
无花果应助Magic采纳,获得10
10秒前
大群发布了新的文献求助10
10秒前
11秒前
14秒前
小武哥完成签到 ,获得积分10
14秒前
14秒前
pineapple yang完成签到,获得积分10
15秒前
16秒前
江十三完成签到,获得积分10
19秒前
21秒前
Magic发布了新的文献求助10
21秒前
22秒前
23秒前
美好幻灵完成签到,获得积分20
23秒前
坚定紫雪完成签到,获得积分20
26秒前
Pursue完成签到,获得积分10
26秒前
26秒前
科研混子发布了新的文献求助10
26秒前
26秒前
LZH发布了新的文献求助10
28秒前
鸭鸭乐园完成签到,获得积分10
28秒前
华仔应助执笔曦倾年采纳,获得10
29秒前
科研通AI5应助美好幻灵采纳,获得10
29秒前
NexusExplorer应助Magic采纳,获得10
30秒前
星空完成签到,获得积分10
31秒前
炙热芷蕊发布了新的文献求助10
32秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
Resilience of a Nation: A History of the Military in Rwanda 500
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3726435
求助须知:如何正确求助?哪些是违规求助? 3271457
关于积分的说明 9972056
捐赠科研通 2986919
什么是DOI,文献DOI怎么找? 1638544
邀请新用户注册赠送积分活动 778142
科研通“疑难数据库(出版商)”最低求助积分说明 747469