PathME: pathway based multi-modal sparse autoencoders for clustering of patient-level multi-omics data

聚类分析 组学 自编码 计算机科学 降维 人工智能 数据挖掘 特征(语言学) 高维数据聚类 机器学习 模式识别(心理学) 生物信息学 计算生物学 生物 深度学习 哲学 语言学
作者
Amina Lemsara,Salima Ouadfel,Holger Fröhlich
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:21 (1) 被引量:39
标识
DOI:10.1186/s12859-020-3465-2
摘要

Recent years have witnessed an increasing interest in multi-omics data, because these data allow for better understanding complex diseases such as cancer on a molecular system level. In addition, multi-omics data increase the chance to robustly identify molecular patient sub-groups and hence open the door towards a better personalized treatment of diseases. Several methods have been proposed for unsupervised clustering of multi-omics data. However, a number of challenges remain, such as the magnitude of features and the large difference in dimensionality across different omics data sources.We propose a multi-modal sparse denoising autoencoder framework coupled with sparse non-negative matrix factorization to robustly cluster patients based on multi-omics data. The proposed model specifically leverages pathway information to effectively reduce the dimensionality of omics data into a pathway and patient specific score profile. In consequence, our method allows us to understand, which pathway is a feature of which particular patient cluster. Moreover, recently proposed machine learning techniques allow us to disentangle the specific impact of each individual omics feature on a pathway score. We applied our method to cluster patients in several cancer datasets using gene expression, miRNA expression, DNA methylation and CNVs, demonstrating the possibility to obtain biologically plausible disease subtypes characterized by specific molecular features. Comparison against several competing methods showed a competitive clustering performance. In addition, post-hoc analysis of somatic mutations and clinical data provided supporting evidence and interpretation of the identified clusters.Our suggested multi-modal sparse denoising autoencoder approach allows for an effective and interpretable integration of multi-omics data on pathway level while addressing the high dimensional character of omics data. Patient specific pathway score profiles derived from our model allow for a robust identification of disease subgroups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
霓娜酱完成签到 ,获得积分10
10秒前
tg2024完成签到 ,获得积分10
12秒前
16秒前
Julien发布了新的文献求助10
20秒前
冬雪完成签到 ,获得积分10
22秒前
涛1完成签到 ,获得积分10
32秒前
MrLiu完成签到,获得积分10
40秒前
呵呵贺哈完成签到 ,获得积分10
43秒前
Dawn完成签到,获得积分10
44秒前
52秒前
cadcae发布了新的文献求助30
57秒前
勤奋凡双完成签到 ,获得积分10
1分钟前
紫熊完成签到,获得积分10
1分钟前
执着夏山完成签到,获得积分10
1分钟前
大观天下完成签到,获得积分10
1分钟前
Aurora完成签到 ,获得积分10
1分钟前
唯有一个心完成签到 ,获得积分10
1分钟前
冰激凌完成签到,获得积分10
1分钟前
心随以动完成签到 ,获得积分10
1分钟前
williamwzt完成签到,获得积分20
1分钟前
我有我风格完成签到 ,获得积分10
1分钟前
王灿灿完成签到,获得积分10
1分钟前
1分钟前
YA应助科研通管家采纳,获得10
1分钟前
彭于彦祖应助科研通管家采纳,获得150
1分钟前
安静夏兰应助科研通管家采纳,获得50
1分钟前
乐乐应助科研通管家采纳,获得30
1分钟前
1分钟前
彭于彦祖应助科研通管家采纳,获得30
1分钟前
1分钟前
1分钟前
Lucas完成签到,获得积分10
1分钟前
luluyang完成签到 ,获得积分10
1分钟前
欢呼的茗茗完成签到 ,获得积分10
1分钟前
畅快的谷秋完成签到 ,获得积分10
1分钟前
研友_8Y26PL完成签到 ,获得积分10
1分钟前
FODCOC完成签到,获得积分10
2分钟前
祥小哥完成签到,获得积分10
2分钟前
科研通AI2S应助西音采纳,获得10
2分钟前
huangyong完成签到 ,获得积分10
2分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
encyclopedia of computational mechanics,2 edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3268802
求助须知:如何正确求助?哪些是违规求助? 2908247
关于积分的说明 8345093
捐赠科研通 2578624
什么是DOI,文献DOI怎么找? 1402210
科研通“疑难数据库(出版商)”最低求助积分说明 655381
邀请新用户注册赠送积分活动 634497