亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CHARM-Deep: Continuous Human Activity Recognition Model Based on Deep Neural Network Using IMU Sensors of Smartwatch

计算机科学 智能手表 人工智能 惯性测量装置 深度学习 活动识别 人工神经网络 模式识别(心理学) 实时计算 嵌入式系统 可穿戴计算机
作者
Sara Ashry,Tetsuji Ogawa,Walid Gomaa
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:20 (15): 8757-8770 被引量:27
标识
DOI:10.1109/jsen.2020.2985374
摘要

In the present paper, an attempt was made to achieve high-performance continuous human activity recognition (CHAR) using deep neural networks. The present study focuses on recognizing different activities in a continuous stream, which means `back-to-back' consecutive set of activities, from only inertial measurement unit (IMU) sensors mounted on smartwatches. For that purpose, a new dataset called `CHAR-SW', which includes numerous streams of daily activities, was collected using smartwatches, and feature representations and network architectures were designed. Experimental comparisons using our own dataset and public datasets (Aruba and Tulum) have been performed. They demonstrated that cascading bidirectional long short-term memory (Bi-LSTM) with featured data performed well in offline mode from the viewpoints of accuracy, computational time, and storage space required. The input to the Bi-LSTM is a descriptor which composed of a stream of the following features: autocorrelation, median, entropy, and instantaneous frequency. Additionally, a novel technique to operate the CHAR system online was introduced and shown to be effective. Experimental results can be summarized as: the offline CHARM-Deep enhanced the accuracy compared with using raw data or the existing approaches, and it reduced the processing time by 86% at least relative to the time consumed in executing the Bi-LSTM classifier directly on the raw data. It also reduced storage space by approximately 97.77% compared with using raw data. The online evaluation shows that it can recognize activities in real-time with an accuracy of 91%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
无花果应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
田様应助科研通管家采纳,获得10
12秒前
小丿丫丿丫完成签到 ,获得积分10
26秒前
wang完成签到 ,获得积分10
30秒前
34秒前
乐乐乐乐乐乐应助蝈蝈采纳,获得10
35秒前
ppw完成签到,获得积分10
36秒前
子桑南完成签到,获得积分10
39秒前
昏睡的醉山完成签到 ,获得积分10
41秒前
51秒前
无花果应助心睡采纳,获得10
52秒前
dogontree发布了新的文献求助10
57秒前
JavedAli完成签到,获得积分10
59秒前
1分钟前
心睡完成签到,获得积分10
1分钟前
心睡发布了新的文献求助10
1分钟前
iwaking完成签到,获得积分10
1分钟前
1分钟前
煎炒焖煮炸培根完成签到,获得积分10
1分钟前
隐形问萍发布了新的文献求助80
1分钟前
科研通AI2S应助AYY采纳,获得10
1分钟前
1分钟前
斯文败类应助Aira采纳,获得10
1分钟前
1分钟前
Mike完成签到,获得积分10
1分钟前
香蕉觅云应助优雅的涵瑶采纳,获得10
1分钟前
淡淡洋葱完成签到,获得积分10
1分钟前
你爹发布了新的文献求助10
1分钟前
monair完成签到 ,获得积分10
1分钟前
qujinzhi完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
可靠的书桃完成签到 ,获得积分10
1分钟前
1分钟前
MCCCCC_6完成签到,获得积分10
1分钟前
Chris完成签到 ,获得积分0
2分钟前
我是老大应助dogontree采纳,获得10
2分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
麻省总医院内科手册(原著第8版) (美)马克S.萨巴蒂尼 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142628
求助须知:如何正确求助?哪些是违规求助? 2793538
关于积分的说明 7806806
捐赠科研通 2449789
什么是DOI,文献DOI怎么找? 1303444
科研通“疑难数据库(出版商)”最低求助积分说明 626917
版权声明 601314