亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CHARM-Deep: Continuous Human Activity Recognition Model Based on Deep Neural Network Using IMU Sensors of Smartwatch

计算机科学 智能手表 人工智能 惯性测量装置 深度学习 活动识别 人工神经网络 模式识别(心理学) 实时计算 嵌入式系统 可穿戴计算机
作者
Sara Ashry,Tetsuji Ogawa,Walid Gomaa
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:20 (15): 8757-8770 被引量:27
标识
DOI:10.1109/jsen.2020.2985374
摘要

In the present paper, an attempt was made to achieve high-performance continuous human activity recognition (CHAR) using deep neural networks. The present study focuses on recognizing different activities in a continuous stream, which means `back-to-back' consecutive set of activities, from only inertial measurement unit (IMU) sensors mounted on smartwatches. For that purpose, a new dataset called `CHAR-SW', which includes numerous streams of daily activities, was collected using smartwatches, and feature representations and network architectures were designed. Experimental comparisons using our own dataset and public datasets (Aruba and Tulum) have been performed. They demonstrated that cascading bidirectional long short-term memory (Bi-LSTM) with featured data performed well in offline mode from the viewpoints of accuracy, computational time, and storage space required. The input to the Bi-LSTM is a descriptor which composed of a stream of the following features: autocorrelation, median, entropy, and instantaneous frequency. Additionally, a novel technique to operate the CHAR system online was introduced and shown to be effective. Experimental results can be summarized as: the offline CHARM-Deep enhanced the accuracy compared with using raw data or the existing approaches, and it reduced the processing time by 86% at least relative to the time consumed in executing the Bi-LSTM classifier directly on the raw data. It also reduced storage space by approximately 97.77% compared with using raw data. The online evaluation shows that it can recognize activities in real-time with an accuracy of 91%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
毕业毕业毕业完成签到 ,获得积分10
7秒前
明天更好完成签到 ,获得积分10
8秒前
疯狂的炒米粉完成签到 ,获得积分10
17秒前
flyinthesky完成签到,获得积分10
59秒前
HC完成签到,获得积分10
1分钟前
张晓祁完成签到,获得积分10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
yueying完成签到,获得积分10
1分钟前
优秀棒棒糖完成签到 ,获得积分10
1分钟前
吃鱼完成签到 ,获得积分10
2分钟前
科研通AI5应助LynSharonRose采纳,获得30
2分钟前
testmanfuxk完成签到,获得积分10
2分钟前
2分钟前
WanchengHu发布了新的文献求助10
2分钟前
wynne313完成签到 ,获得积分10
2分钟前
2分钟前
shaylie完成签到 ,获得积分10
2分钟前
2分钟前
oscar完成签到,获得积分10
2分钟前
LynSharonRose发布了新的文献求助30
2分钟前
cwy发布了新的文献求助10
2分钟前
小黄完成签到 ,获得积分10
2分钟前
及禾应助LynSharonRose采纳,获得20
2分钟前
WanchengHu完成签到,获得积分10
2分钟前
小马甲应助cwy采纳,获得10
3分钟前
3分钟前
在水一方应助科研通管家采纳,获得10
3分钟前
3分钟前
LynSharonRose完成签到,获得积分10
3分钟前
hsy完成签到,获得积分10
3分钟前
4分钟前
善学以致用应助LULU采纳,获得10
4分钟前
4分钟前
月亮发布了新的文献求助10
4分钟前
科研通AI6应助月亮采纳,获得10
4分钟前
月亮完成签到,获得积分10
4分钟前
星辰大海应助ranj采纳,获得10
5分钟前
精明凡双应助科研通管家采纳,获得10
5分钟前
5分钟前
小二郎应助幽默安珊采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4626005
求助须知:如何正确求助?哪些是违规求助? 4025048
关于积分的说明 12458300
捐赠科研通 3710193
什么是DOI,文献DOI怎么找? 2046504
邀请新用户注册赠送积分活动 1078457
科研通“疑难数据库(出版商)”最低求助积分说明 960922