CHARM-Deep: Continuous Human Activity Recognition Model Based on Deep Neural Network Using IMU Sensors of Smartwatch

计算机科学 智能手表 人工智能 惯性测量装置 深度学习 活动识别 人工神经网络 模式识别(心理学) 实时计算 嵌入式系统 可穿戴计算机
作者
Sara Ashry,Tetsuji Ogawa,Walid Gomaa
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:20 (15): 8757-8770 被引量:27
标识
DOI:10.1109/jsen.2020.2985374
摘要

In the present paper, an attempt was made to achieve high-performance continuous human activity recognition (CHAR) using deep neural networks. The present study focuses on recognizing different activities in a continuous stream, which means `back-to-back' consecutive set of activities, from only inertial measurement unit (IMU) sensors mounted on smartwatches. For that purpose, a new dataset called `CHAR-SW', which includes numerous streams of daily activities, was collected using smartwatches, and feature representations and network architectures were designed. Experimental comparisons using our own dataset and public datasets (Aruba and Tulum) have been performed. They demonstrated that cascading bidirectional long short-term memory (Bi-LSTM) with featured data performed well in offline mode from the viewpoints of accuracy, computational time, and storage space required. The input to the Bi-LSTM is a descriptor which composed of a stream of the following features: autocorrelation, median, entropy, and instantaneous frequency. Additionally, a novel technique to operate the CHAR system online was introduced and shown to be effective. Experimental results can be summarized as: the offline CHARM-Deep enhanced the accuracy compared with using raw data or the existing approaches, and it reduced the processing time by 86% at least relative to the time consumed in executing the Bi-LSTM classifier directly on the raw data. It also reduced storage space by approximately 97.77% compared with using raw data. The online evaluation shows that it can recognize activities in real-time with an accuracy of 91%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
1秒前
hjs发布了新的文献求助10
1秒前
2秒前
周周南发布了新的文献求助100
3秒前
hu发布了新的文献求助10
3秒前
google发布了新的文献求助10
4秒前
失眠听南完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
虫二队长完成签到,获得积分10
5秒前
VERITAS完成签到,获得积分10
5秒前
6秒前
uu发布了新的文献求助20
7秒前
英姑应助七七采纳,获得10
8秒前
9秒前
zz发布了新的文献求助10
9秒前
量子星尘发布了新的文献求助10
10秒前
852应助无情的瑾瑜采纳,获得10
10秒前
彩色一曲关注了科研通微信公众号
11秒前
11秒前
12秒前
xin发布了新的文献求助10
13秒前
14秒前
77完成签到,获得积分10
14秒前
14秒前
领导范儿应助科研通管家采纳,获得10
14秒前
我是老大应助科研通管家采纳,获得10
14秒前
14秒前
领导范儿应助科研通管家采纳,获得10
15秒前
15秒前
今后应助科研通管家采纳,获得30
15秒前
华仔应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
dd发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
17秒前
17秒前
干雅柏发布了新的文献求助30
18秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664299
求助须知:如何正确求助?哪些是违规求助? 3224405
关于积分的说明 9757262
捐赠科研通 2934339
什么是DOI,文献DOI怎么找? 1606816
邀请新用户注册赠送积分活动 758829
科研通“疑难数据库(出版商)”最低求助积分说明 735012