拉曼光谱
荧光
光漂白
拉曼散射
化学
分析化学(期刊)
过氧化氢
聚苯乙烯
材料科学
光学
色谱法
聚合物
有机化学
物理
标识
DOI:10.1177/0003702820919823
摘要
Auto-fluorescence is a significant challenge for Raman spectroscopic analyses. Since fluorescence is a much stronger phenomenon than Raman scattering, even trace fluorescent impurities can overwhelm the Raman signal. Strategies to minimize fluorescence interference in Raman measurements include either an instrumental-based approach or treatment of the sample itself to minimize fluorescence. Efforts focused on sample-based treatments to reduce fluorescence interferences have generally focused on sample purification and photobleaching methodologies. In this work, we present a sample treatment approach based upon chemical bleaching to remove fluorescence from Raman measurements of aqueous solutions of sulfonated polystyrene (SPS). Synthetic batches of SPS are characterized by a wide variation in fluorescence from minimum to a catastrophic level, which greatly limits the use of Raman spectroscopy. We systematically investigate the efficacy of various sample-based treatments of the SPS samples. An important acceptance criterion is that the procedure effectively and reliably removes fluorescence without damaging the SPS component. The chemical bleaching, which involves the addition of hydrogen peroxide and incubation at 60 ℃, is found to be highly effective. The parameters affecting the bleaching efficacy are studied, including temperature, hydrogen peroxide dosage, and bleaching time. Classification models are then developed based on the drastically diverse fluorescence background levels in Raman spectra of SPS to help optimize bleaching time for each specific sample. This work serves as an example of using chemical bleaching to remove fluorescence, which is inexpensive and readily available. It can facilitate a broader use of Raman spectroscopy as a quantitative qualitative control method in industrial settings.
科研通智能强力驱动
Strongly Powered by AbleSci AI